Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Appl Microbiol Biotechnol ; 108(1): 469, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39298023

RESUMEN

Prior research has indicated that the gut-lung-axis can be influenced by the intestinal microbiota, thereby impacting lung immunity. Rifaximin is a broad-spectrum antibacterial drug that can maintain the homeostasis of intestinal microflora. In this study, we established an influenza A virus (IAV)-infected mice model with or without rifaximin supplementation to investigate whether rifaximin could ameliorate lung injury induced by IAV and explore the molecular mechanism involved. Our results showed that IAV caused significant weight loss and disrupted the structure of the lung and intestine. The analysis results of 16S rRNA and metabolomics indicated a notable reduction in the levels of probiotics Lachnoclostridium, Ruminococcaceae_UCG-013, and tryptophan metabolites in the fecal samples of mice infected with IAV. In contrast, supplementation with 50 mg/kg rifaximin reversed these changes, including promoting the repair of the lung barrier and increasing the abundance of Muribaculum, Papillibacter and tryptophan-related metabolites content in the feces. Additionally, rifaximin treatment increased ILC3 cell numbers, IL-22 level, and the expression of RORγ and STAT-3 protein in the lung. Furthermore, our findings demonstrated that the administration of rifaximin can mitigate damage to the intestinal barrier while enhancing the expression of AHR, IDO-1, and tight junction proteins in the small intestine. Overall, our results provided that rifaximin alleviated the imbalance in gut microbiota homeostasis induced by IAV infection and promoted the production of tryptophan-related metabolites. Tryptophan functions as a signal to facilitate the activation and movement of ILC3 cells from the intestine to the lung through the AHR/STAT3/IL-22 pathway, thereby aiding in the restoration of the barrier. KEY POINTS: • Rifaximin ameliorated IAV infection-caused lung barrier injury and induced ILC3 cell activation. • Rifaximin alleviated IAV-induced gut dysbiosis and recovered tryptophan metabolism. • Tryptophan mediates rifaximin-induced ILC3 cell activation via the AHR/STAT3/IL-22 pathway.


Asunto(s)
Microbioma Gastrointestinal , Virus de la Influenza A , Pulmón , Infecciones por Orthomyxoviridae , Rifaximina , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Rifaximina/uso terapéutico , Ratones , Pulmón/microbiología , Pulmón/efectos de los fármacos , Infecciones por Orthomyxoviridae/tratamiento farmacológico , Virus de la Influenza A/efectos de los fármacos , Modelos Animales de Enfermedad , ARN Ribosómico 16S/genética , Interleucinas/metabolismo , Interleucinas/genética , Interleucina-22 , Ratones Endogámicos C57BL , Antibacterianos/farmacología , Factor de Transcripción STAT3/metabolismo , Heces/microbiología , Triptófano/metabolismo , Lesión Pulmonar/tratamiento farmacológico , Probióticos/administración & dosificación , Probióticos/farmacología
2.
Poult Sci ; 103(12): 104256, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39288718

RESUMEN

Infectious bronchitis virus (IBV) is one of the major avian pathogens plaguing the global poultry industry. Although vaccination is the primary preventive measure for IBV infection, the emergence of virus variants with mutations and recombination has resulted in IBV circulating globally, presenting a challenge for IB control. Here, we isolated 3 IBV strains (CZ200515, CZ210840, and CZ211063) from suspected sick chickens vaccinated with IBV live attenuated vaccines (H120, 4/91, or QXL87). Phylogenetic analysis of the S1 gene sequence of the spike (S) revealed that the 3 isolates belonged to the QX-type (GI-19 lineage). Whole genome sequencing and recombination analysis indicated that CZ200515 and CZ210840 contained genetic material from 4/91 and Scyz3 (QX-type), possibly due to recombination between the circulating strain and the 4/91 vaccine strain, while no evidence of recombination was found in CZ211063. Pathogenicity analysis in 1-day-old specific pathogen-free (SPF) chickens demonstrated that all 3 isolates caused severe tissue damage and varying degrees of mortality. Virus cross-neutralization assay revealed decreased antigen relatedness between the isolates and the QX-type vaccine strain (QXL87). Amino acid sequence homology analysis of S1 revealed 5%-6.5% variances between the isolates and QXL87. Analysis of the S1 subunit structure revealed that mutations of amino acid residues in the hypervariable region (HVR) and the neutralizing epitope region resulted in antigenic variation in isolates by changing the antigen conformation. Our data indicate antigenicity variances between QX isolates and QXL87 vaccine strains, potentially resulting in immune evasion occurrences. Overall, these results offer crucial insights into the epidemiology and pathogenicity of QX-type IBV, facilitating improved selection and formulation of vaccines for disease management.

3.
Environ Technol ; : 1-12, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39221764

RESUMEN

Secondary iron minerals play significant roles in the immobilization of As under acidic conditions, such as acid mine drainage. However, previous research works have not clarified the effect of pH on As(III) removal through coprecipitation with secondary minerals. Therefore, in this study, we aimed to investigate the discrepancy in As(III) coprecipitation with biogenic synthesized schwertmannite (Sch) and jarosite (Jar) at different pH values. For this, concentrations of Fe2+, TFe, SO42-, and As(III) in shake flasks were monitored during an overall incubation period of 83 h at initial pH of 1.5, 2.0, and 2.5. In addition, the physicochemical properties of collected minerals after incubation were identified using scanning electron microscopy, X-ray diffraction, pore size distribution, and Brunauer - Emmett - Teller surface area analyses. Our results showed that almost no mineral synthesis and no As(III) removal were detected in coprecipitated schwertmannite (Co-Sch) system and coprecipitated jarosite (Co-Jar) system at an initial pH of 1.5. The TFe precipitation efficiencies and As(III) removal efficiencies increased considerably and morphologies of Co-Sch and Co-Jar improved significantly when the initial pH value increased from 2.0-2.5. The maximum TFe precipitation efficiency and As(III) removal efficiency reached 30.8% and 89.6%, respectively, for the Co-Sch system, and were 47.5% and 37.4%, respectively, for the Co-Jar system. The overall results show that pH significantly affects the formation of Co-Sch and Co-Jar and the behaviour of As(III) coprecipitation.

4.
Poult Sci ; 103(10): 104125, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39137496

RESUMEN

After viral infection, the virus relies on the host cell's complex metabolic and biosynthetic machinery for replication. However, the impact of avian influenza virus (AIV) on metabolites and gene expression in poultry cells remains unclear. To investigate this, we infected chicken embryo fibroblasts DF1 cells with H9N2 AIV at an MOI of 3. Our aim was to explore how H9N2 AIV alters DF1 cells metabolic pathways to facilitate its replication. We employed metabolomics and transcriptomics techniques to analyze changes in metabolite content and gene expression. Metabolomics analysis revealed a significant increase in glutathione-related metabolites, including reduced glutathione (GSH), oxidized glutathione (GSSG) and total glutathione (T-GSH) upon H9N2 AIV infection in DF1 cells. Elisa results confirmed elevated levels of GSH, GSSG, and T-GSH consistent with metabolomics findings, noting a pronounced increase in GSSG compared to GSH. Transcriptomics showed significant alterations in genes involved in glutathione synthesis and metabolism post-H9N2 infection. However, adding the glutathione synthesis inhibitor BSO exogenously significantly promoted H9N2 replication in DF1 cells. This was accompanied by increased mRNA levels of pro-inflammatory cytokines (IL-1ß, IFN-γ) and decreased mRNA levels of anti-inflammatory cytokines (TGF-ß, IL-13). BSO also reduced catalase (CAT) gene expression and inhibited its activity, leading to higher reactive oxygen species (ROS) and malondialdehyde (MDA) level in DF1 cells. qPCR results indicated decreased mRNA levels of Nrf2, NQO1, and HO-1 with BSO, ultimately increasing oxidative stress in DF1 cells. Therefore, the above results indicated that H9N2 AIV infection in DF1 cells activated the glutathione metabolic pathway to enhance the cell's self-defense mechanism against H9N2 replication. However, when GSH synthesis is inhibited within the cells, it leads to an elevated oxidative stress level, thereby promoting H9N2 replication within the cells through Nrf2/HO-1 pathway. This study provides a theoretical basis for future rational utilization of the glutathione metabolic pathway to prevent viral replication.

5.
Water Sci Technol ; 87(8): 1879-1892, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37119161

RESUMEN

Soluble iron and sulfate in acid mine drainage (AMD) can be greatly removed through the formation of minerals facilitated by seed crystals. However, the difference in the effects of jarosite and schwertmannite as endogenous seed crystals to induce AMD mineralization remains unclear. This paper intends to study the effect of Fe2+ oxidation and Fe3+ mineralization in the biosynthesis of minerals using different addition amounts and methods of jarosite or schwertmannite. The results showed that the addition amount and method of different seed crystals had no effect on the Fe2+ bio-oxidation but would change the Fe3+ mineralization efficiency. With the same amount of seed crystals added, jarosite exhibited a higher capacity to promote Fe3+ mineralization than schwertmannite. Adding seed crystals before the initiation of Fe2+ oxidation (0 h) could significantly promote Fe3+ mineralization efficiency. With the increase of seed crystals, jarosite could not only shorten the time required for mineral synthesis but also improve the final mineral yield, whereas schwertmannite could only shorten the time required for mineral synthesis. When Fe2+ was completely oxidized to Fe3+ (48 h), the supplementary of jarosite could still effectively improve Fe3+ mineralization efficiency, but the addition of schwertmannite no longer affected the final mineralization degree.


Asunto(s)
Acidithiobacillus , Compuestos de Hierro , Hierro , Biomineralización , Compuestos de Hierro/química , Compuestos Férricos/química , Minerales , Oxidación-Reducción
6.
Chemosphere ; 310: 136811, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36220427

RESUMEN

Di (2-ethylhexyl) phthalate (DEHP) is a widely used plastics additive that growing evidence indicates as endocrine disruptor able to negatively affect various reproductive processes both in female and male animals, including humans. However, the precise molecular mechanism of such actions is not completely understood. In the present study, scRNA-seq was performed on the ovaries of offspring from mothers exposed to DEHP from 16.5 days post coitum to 3 days post-partum, when the primordial follicle (PF) stockpile is established. While the histological observations of the offspring ovaries from DEHP exposed mothers confirmed previous data about a distinct reduction of oocytes enclosed in PFs. Focusing on oocytes, scRNA-seq analyses showed that the genes that mostly changed by DEHP were enriched GO terms related to histone H3-K4 methylation. Moreover, we observed H3K4me3 level, an epigenetics modification of H3 that is crucial for chromatin transcription, decreased by 40.28% (P < 0.01) in DEHP-treated group compared with control. When the newborn ovaries were cultured in vitro, the DEHP effects were abolished by tamoxifen (an estrogen receptor antagonist) or overexpression of Smyd3 (one specific methyltransferase of H3K4me3), in particular, the percentage of oocyte enclosed in PF was increased by 15.39% in DEHP plus Smyd3 overexpression group than of DEHP group (P < 0.01), which was accompanied by the upregulation of H3K4me3. Collectively, the present results discover Smyd3-H3K4me3 as a novel target of the deleterious ER-mediated effect of DEHP on PF formation during early folliculogenesis in the mouse and highlight epigenetics changes as prominent targets of endocrine disruptors like DEHP.


Asunto(s)
Dietilhexil Ftalato , Disruptores Endocrinos , Animales , Femenino , Masculino , Ratones , Dietilhexil Ftalato/toxicidad , Disruptores Endocrinos/toxicidad , N-Metiltransferasa de Histona-Lisina , Histonas , Folículo Ovárico
7.
RSC Adv ; 10(14): 8453-8459, 2020 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-35497824

RESUMEN

To explore the basic chemistry in the electrochemical environment, the electrochemical behavior of Ag and the influence of Au decoration is investigated with cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and operando Raman measurements in a 1 M KOH solution. During the anodic CV sweep, Ag is oxidized to Ag2O in the first step through a one-electron process, and then, AgO in the second step through another one-electron process. Meanwhile, some AgO is formed at a relatively low potential under the irradiation of visible lights (photoelectrochemical oxidation). In the GCD mode, it is found that apart from the two one-electron processes, part of the Ag is oxidized to AgO directly through a two-electron process in the second oxidation step, implying slightly different activities of these reactions in the CV and GCD mode. During cathodic CV sweep and galvanostatic discharge, opposite reactions take place respectively. The coulombic efficiency is calculated to be only ∼82% from the CV cycle at 5 mV s-1 due to the formation of silver hydroxyl species (oxidation state) in a low potential range. For the Au decorated Ag, Raman signals from these species disappeared and the coulombic efficiency is enhanced to 95%, indicating an obvious improvement in reversibility.

8.
Chem Commun (Camb) ; 55(85): 12817-12820, 2019 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-31595889

RESUMEN

Recently, water-in-salt electrolytes have been widely reported because of their ability in broadening the potential window of aqueous based energy storage devices. Herein, another eco-friendly and cost-effective electrolyte, concentrated potassium formate of 40 M HCOOK where the water-to-salt molar ratio falls to 1.38 : 1, is proposed. The electrolyte demonstrates a wide potential window of up to 4 V (-2.5 to 1.5 V vs. Ag/AgCl) with a glassy carbon electrode. Compared with a CH3COOK based electrolyte, the HCOOK possesses lower stable negative potential and higher ionic conductivity. For an activated carbon based supecapacitive electrode, a low discharge potential of -2.4 V vs. Ag/AgCl can be achieved. Besides, a high capacity of 321 F g-1 is obtained at 5 A g-1 and it is still as high as 121 F g-1 at 20 A g-1. Meanwhile, typical K-battery behavior is exhibited for the KTi2(PO4)3 anode and a reversible capacity of 15 mA h g-1 can be delivered at 0.1 A g-1.

9.
ACS Nano ; 13(8): 9091-9099, 2019 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-31393706

RESUMEN

While pseudocapacitive electrodes have potential to store more energy than electrical double-layer capacitive electrodes, their rate capability is often limited by the sluggish kinetics of the Faradaic reactions or poor electronic and ionic conductivity. Unlike most transition-metal oxides, MoO2 is a very promising material for fast energy storage, attributed to its unusually high electronic and ionic conductivity; the one-dimensional tunnel is ideally suited for fast ionic transport. Here we report our findings in preparation and characterization of ultrathin MoO2 sheets with oriented tunnels as a pseudocapacitive electrode for fast charge storage/release. A composite electrode consisting of MoO2 and 5 wt % GO demonstrates a capacity of 1097 C g-1 at 2 mV s-1 and 390 C g-1 at 1000 mV s-1 while maintaining ∼80% of the initial capacity after 10,000 cycles at 50 mV s-1, due to minimal change in structural features of the MoO2 during charge/discharge, except a small volume change (∼14%), as revealed from operando Raman spectroscopy, X-ray analyses, and density functional theory calculations. Further, the volume change during cycling is highly reversible, implying high structural stability and long cycling life.

10.
Phys Chem Chem Phys ; 19(36): 24689-24695, 2017 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-28861575

RESUMEN

α-V2O5 nanowires with a layered structure have been fabricated through a two-step procedure. When measured as a pseudo-capacitive electrode with a three-electrode configuration in 1 M Na2SO4 aqueous solutions, α-V2O5 exhibits ideal capacitive characteristics with a specific capacitance of ∼238 F g-1 at a high current of 2 A g-1, but poor cycling stability with a continuous drop in the first 2000 cycles before it is maintained. To find possible solutions towards this problem, the energy storage behavior of the α-V2O5 electrode has been carefully investigated. In situ Raman analysis suggests that it is electrolytic hydrated cations [Na(H2O)n]+ rather than anions (SO42-) that are involved in the energy storage process through reversible adsorption/desorption on the surface or intercalation/deintercalation at the interlayer of the (001) planes accompanied by interlayer spacing expansion/contraction. Moreover, the electrochemical quartz crystal microbalance results indicate that, besides a reversible mass change, there is a continuous mass loss that may originate from slow dissolution of V2O5, which should bear the main responsibility for the poor stability (initial dramatic drop). Hence, how to inhibit dissolution, such as by coating or adding additives in the electrolyte, is found to be the key approach to improve the stability of V2O5 based electrodes.

11.
ACS Appl Mater Interfaces ; 9(15): 13173-13180, 2017 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-28353335

RESUMEN

A facile and cost-efficient approach to functionalize raw carbon fiber paper (CFP) used for a self-standing capacitive electrode has been proposed here. Benefiting from the improved specific surface area and surface functional groups, the functionalized CFP (F-CFP) showed much enhanced capacitive performance, 3 orders of magnitude higher than that of the raw CFP. It delivered the areal capacitance of 1275 mF cm-2 at 5 mA cm-2 with a rather wide voltage window of 1.4 V (-0.4 to 1 V vs Ag/AgCl) in 0.5 M H2SO4. However, in a neutral 1 M Na2SO4 aqueous solution, although the areal capacitance of 1115 mF cm-2 at 3 mA cm-2 is slightly smaller, the potential window is much wider (2 V, -1 to 1 V vs Ag/AgCl), indicating a high overpotential of hydrogen evolution. The areal capacitance was still as high as 722 mF cm-2 at a very fast charge-discharge current density of 50 mA cm-2, and about 66% of the initial capacitance (at 3 mA cm-2) was remained in Na2SO4, indicating considerable rate capability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA