Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Agric Food Chem ; 72(8): 4257-4266, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38354318

RESUMEN

Selenium nanoparticles (SeNPs) are important and safe food and feed additives that can be used for dietary supplementation. In this study, a mutagenic strain of Saccharomyces boulardii was employed to obtain biologically synthesized SeNPs (BioSeNPs) with the desired particle size by controlling the dosage and duration of sodium selenite addition, and the average particle size achieved was 55.8 nm with protease A encapsulation. Transcriptomic analysis revealed that increased expression of superoxide dismutase 1 (SOD1) in the mutant strain effectively promoted the synthesis of BioSeNPs and the formation of smaller nanoparticles. Under sodium selenite stress, the mutant strain exhibited significantly increased expression of glutathione peroxidase 2 (GPx2), which was significantly greater in the mutant strain than in the wild type, facilitating the synthesis of glutathione selenol and providing abundant substrates for the production of BioSeNPs. Furthermore, based on the experimental results and transcriptomic analysis of relevant genes such as sod1, gpx2, the thioredoxin reductase 1 gene (trr1) and the thioredoxin reductase 2 gene (trr2), a yeast model for the size-controlled synthesis of BioSeNPs was constructed. This study provides an important theoretical and practical foundation for the green synthesis of controllable-sized BioSeNPs or other metal nanoparticles with potential applications in the fields of food, feed, and biomedicine.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Saccharomyces boulardii , Selenio , Catálisis , Saccharomyces boulardii/metabolismo , Selenio/metabolismo , Selenito de Sodio , Superóxido Dismutasa/genética , Superóxido Dismutasa-1
2.
Arch Microbiol ; 205(12): 372, 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37934297

RESUMEN

As a natural green additive, gallic acid has been widely used in food production. However, it can inhibit the physiological metabolism of Escherichia coli, which severely limits the ability and efficiency of gallic acid production. To explore the adaptation mechanism of E. coli under gallic acid stress and further explore the target of genetic modification, the effects of gallic acid stress on the fermentation characteristics of E. coli W3110 ATCC (82057) were investigated by cell biomass and cell morphometry. Moreover, transcriptome analysis was used to analyze the gene transcription level of E. coli W3110 ATCC (82057) to explore effects of gallic acid stress on important essential physiological processes. The results showed that under high concentration of gallic acid, the biomass of E. coli W3110 ATCC (82057) decreased significantly and the cells showed irregular morphology. Transcriptome analysis showed that E. coli W3110 ATCC (82057) improved its adaptive capacity through three strategies. First, genes of bamD, ompC, and ompF encoding outer membrane protein BamD, OmpC, and OmpC were decreased 5-, 31.1- and 8.1-fold, respectively, under gallic acid stress compared to the control, leading to the reduction of gallic acid absorption. Moreover, genes (mdtA, mdtB, mdtC, mdtD, mdtE, and mdtF) related to MdtABC multidrug efflux system and multidrug efflux pump MdtEF were up-regulated by1.0-53.0 folds, respectively, and genes (aaeA, aaeB, and aaeX) related to AaeAB efflux system were up-regulated by 8.0-13.3 folds, respectively, which contributed to the excretion of gallic acid. In addition, genes of acid fitness island also were up-regulated by different degrees under the stress of an acidic environment to maintain the stability of the intracellular environment. In conclusion, E. coli W3110 ATCC (82057) would enhance its tolerance to gallic acid by reducing absorption, increasing excretion, and maintaining intracellular environment stability. This study provides research ideas for the construction of engineered strains with high gallic acid yield.


Asunto(s)
Escherichia coli , Transcriptoma , Transporte Biológico , Ácido Gálico , Perfilación de la Expresión Génica
3.
Bioprocess Biosyst Eng ; 46(12): 1837-1845, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37924351

RESUMEN

Severe butanol toxicity to the metabolism of solventogenic clostridia significantly impede the application of fermentative butanol as a biofuel. Liquid-liquid extraction is an efficient method to reduce the butanol toxicity by in-situ removing it in the extractant phase. Butanol mass transfer into extractant phase in static acetone-butanol-ethanol (ABE) extractive fermentation with biodiesel as the extractant could be enhanced by adding a tiny amount of surfactant such as tween-80. In the case of corn-based ABE extractive fermentation by Clostridium acetobutylicum ATCC 824 using biodiesel originated from waste cooking oil as extractant, addition of 0.14% (w/v) tween-80 could increase butanol production in biodiesel and total solvents production by 21% and 17%, respectively, compared to those of control under non-surfactant existence. Furthermore, a mathematical model was developed to elucidate the mechanism of enhanced ABE extractive fermentation performance. The results indicated that the mass transfer improvement was obtained by effectively altering the physical properties of the self-generated bubbles during ABE extractive fermentation, such as reducing bubble size and extending its retention time in extractant phase, etc. Overall, this study provided an efficient approach for enhancing biobutanol production by integration of bioprocess optimization and model interpretation.


Asunto(s)
Butanoles , Clostridium acetobutylicum , Butanoles/metabolismo , Acetona/metabolismo , Fermentación , Tensoactivos/metabolismo , Polisorbatos/metabolismo , Biocombustibles , Etanol/metabolismo , 1-Butanol/metabolismo
4.
Bioresour Technol ; 387: 129661, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37573976

RESUMEN

Glycerol organosolv pretreatment (GOP) is considered an efficient method to deconstruct lignocellulose for producing fermentable sugars. Herein, the liquid fraction containing glycerol after GOP was utilized for recycled pretreatment of corn stover (CS) for four cycles. Enzymatic yield of glucose after recycled pretreatment was enhanced by 2.4-3.5 folds compared with untreated CS. Meanwhile, residual glycerol was used as carbon source for cultivation of Pichia pastoris to obtain high cell-density, and a final titer of 1.3 g/L human lysozyme was produced by P. pastoris under low temperature methanol induction strategy. Additionally, the pretreated CS was mixed with cassava as fermentable substrates for butanol production by wild-type Clostridium acetobutylicum ATCC 824. Final butanol production of 13.9 g/L was obtained from mixed substrates (25%:75% of CS/cassava) at 10% solids loading by simultaneous saccharification and fermentation. Overall, integration of residual glycerol utilization and butanol production by microbial fermentation provided an efficient strategy for biorefinery.


Asunto(s)
Clostridium acetobutylicum , Glicerol , Humanos , Biomasa , Fermentación , Butanoles , 1-Butanol , Hidrólisis
5.
J Environ Manage ; 344: 118538, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37406494

RESUMEN

The Russo-Ukrainian war has highlighted concerns regarding the European Union's (EU) energy security, given its heavy dependence on Russian natural gas for electricity and heating. The RePowerEU initiative addresses this challenge by targeting a significant increase in biomethane production (up to 35 billion m3 by 2030) to replace natural gas, aligning with the EU methane strategy's emission reduction and air quality improvement goals. However, the use of energy crops as biogas feedstock has raised land-use concerns, necessitating a policy shift towards alternative sources such as agro-residues, livestock manure, and sewage sludge. This study investigates the environmental impacts of using roadside grass clippings (RG) as an alternative feedstock for biogas production, focusing on selected regions in Northwest Europe (Belgium, Netherlands). The aim is to evaluate the environmental performance of RG as a mono- or co-substrate for biogas production, comparing it to the current practice of composting. Additionally, the study assesses the environmental impacts associated with biogas end-use in these regions. The results indicate that co-digestion of RG with pig manure offers a more environmentally friendly alternative compared to mono-digestion of RG or the existing composting practice. This finding is primarily attributed to the avoided emissions resulting from conventional pig manure management. Furthermore, in terms of climate change impacts concerning biogas end-use, the study identifies that combined heat and power (CHP) systems are preferable to biomethane recovery in regions with a natural gas-based electricity mix. However, for reducing fossil resource use, biomethane recovery emerges as the preferred option. By providing insights into the environmental performance of RG as a biogas feedstock and evaluating the impacts of different biogas end-use options, this study offers insights to policymakers for the development of sustainable energy strategies in Northwest Europe.


Asunto(s)
Biocombustibles , Poaceae , Animales , Porcinos , Estiércol , Gas Natural , Europa (Continente) , Metano
6.
Front Bioeng Biotechnol ; 11: 1112349, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36741761

RESUMEN

The perfusion medium is critical in maintaining high cell concentration in cultures for the production of monoclonal antibody by Chinese hamster ovary cells. In this study, the effects of perfusion culture strategies when using different media on the process stability, product titer, and product quality were investigated in 3-L bioreactor. The results indicated that continuous perfusion could maintain higher levels of cell density, product titer, and quality in comparison with those of the intermittent perfusion culture. Next, the perfusion culture conditions with different perfusion rates and temperature reduction methods were further optimized. When combining the high perfusion rates and delayed reduction of culture temperature at day 6, the product titer reached a higher level of 16.19 g/L with the monomer relative abundant of 97.6%. In this case, the main peak of the product reached 56.3% and the total N-glycans ratio was 95.2%. To verify the effectiveness of the optimized perfusion culture in a larger scale, a 200-L bioreactor was used to perform and the final product titer reached the highest level of 16.79 g/L at day 16. Meanwhile, the product quality (monomer abundant of 97.6%, main peak of 56.3%, and N-glycans ratio of 96.5%) could also be well maintained. This study provided some guidance for the high-efficient production of monoclonal antibody by CHO cells via optimized perfusion culture strategy.

7.
Front Bioeng Biotechnol ; 10: 1051117, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36507279

RESUMEN

Salidroside, the main bioactive compound isolated from the plant source of Rhodiola rosea L, possesses broad-spectrum pharmacological activities, but suffers from the low cell membranes permeability and alimentary absorption due to its high polarity. Therefore, a whole-cell catalytic strategy for the synthesis of salidroside esters was explored to improve its lipophilicity. The results showed that Aspergillus oryzae demonstrated the highest biocatalytic activity among the microbial strains tested. For the synthesis of salidroside caprylate, the optimum conditions of reaction medium, Aspergillus oryzae amount, molar ratio of vinyl caprylate to salidroside and reaction temperature were acetone, 30 mg/ml, 10°C and 40°C, respectively. Under these conditions, the initial reaction rate was 15.36 mM/h, and substrate conversion and regioselectivity all reached 99%. Moreover, the results indicated that although various 6'-monoesters derivatives of salidroside were exclusively obtained with excellent conversions (96%-99%), the reaction rate varied greatly with different chain-length acyl donors. This study details an efficient and cost-effective biocatalytic approach for the synthesis of salidroside esters by using Aspergillus oryzae as a catalyst for the first time. Considering the whole cell catalytic efficiency and operational stability, this strategy may provide a new opportunity to develop green industrial processes production for ester derivatives of salidroside and its analogues.

8.
Bioresour Technol ; 363: 127975, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36122842

RESUMEN

Deconstruction of lignocellulose via efficient pretreatment is crucial for producing fermentable sugars. In this study, effects of glycerol organosolv pretreatment (GOP) on main chemical composition of corn stover were investigated. Results indicate that the residual corn stover after 80 wt% glycerol pretreatment (at 220 °C for 0.5 h) yielded 75.97 % glucose and 78.21 % xylose after enzymatic hydrolysis, which were enhanced by 3.39- and 6.08-fold compared to the untreated corn stover. Subsequently, an l-cysteine-assisted GOP was proposed with higher yields of glucose (86.20 %) and xylose (91.13 %). When pretreating corn stover with 80 wt% glycerol containing 0.07 wt% l-cysteine at 220 °C for 0.5 h, higher fermentable sugars of 26.08 g were produced from 100 g feedstock after enzymolysis. Intrinsic mechanisms of the proposed pretreatment for enhancing enzymatic digestibility were elucidated by physiochemical characterization technologies and techno-economic analysis was also studied. This study provides guidance for fermentable sugars production from renewable lignocellulose.


Asunto(s)
Xilosa , Zea mays , Cisteína , Glucosa , Glicerol/farmacología , Hidrólisis , Azúcares , Zea mays/química
9.
Bioresour Bioprocess ; 9(1): 76, 2022 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38647760

RESUMEN

Gallic acid is a natural phenolic acid that has a stress inhibition effect on Escherichia coli. This study by integrates fermentation characteristics and transcriptional analyses to elucidate the physiological mechanism of E. coli 3110 response to gallic acid. Compared with the control (without stress), the cell growth was severely retarded, and irregular cell morphology appeared in the case of high levels of gallic acid stress. The glucose consumption of E. coli was reduced successively with the increase of gallic acid content in the fermentation medium. After 20 h of gallic acid stress, cofactor levels (ATP, NAD+ and NADH) of E. coli 3110 were similarly decreased, indicating a more potent inhibitory effect of gallic acid on E. coli. The transcriptional analysis revealed that gallic acid altered the gene expression profiles related to five notable differentially regulated pathways. The genes related to the two-component system were up-regulated, while the genes associated with ABC-transporter, energy metabolism, carbon metabolism, and fatty acid biosynthesis were down-regulated. This is the first report to comprehensively assess the toxicity of gallic acid on E. coli. This study has implications for the efficient production of phenolic compounds by E. coli and provides new ideas for the study of microbial tolerance to environmental stress and the identification of associated tolerance targets.

10.
Crit Rev Biotechnol ; 41(4): 491-512, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33541153

RESUMEN

Gamma-aminobutyric acid (GABA) is an important non-protein amino acid with wide-ranging applications. Currently, GABA can be produced by a variety of methods, including chemical synthesis, plant enrichment, enzymatic methods, and microbial production. Among these methods, microbial production has gained increasing attention to meet the strict requirements of an additive in the fields of food, pharmaceutical, and livestock. In addition, renewable and abundant resources, such as glucose and lignocellulosic biomass can also be used for GABA microbial production under mild and environmentally friendly processing conditions. In this review, the applications, metabolic pathways and physiological functions of GABA in different microorganisms were firstly discussed. A comprehensive overview of the current status of process engineering strategies for enhanced GABA production, including fermentation optimization and whole-cell conversion from different feedstocks by various host strains is also provided. We also presented the state-of-the-art achievements in strain development strategies for industrial lactic acid bacteria (LAB), Corynebacterium glutamicum and Escherichia coli to enhance the performance of GABA bioproduction. In order to use bio-based GABA in the fields of food and pharmaceutical, some Generally Recognized as Safe (GRAS) strains such as LAB and C. glutamicum will be the promising chassis hosts. Toward the end of this review, current challenges and valuable research directions/strategies on the improvements of process and strain engineering for economic microbial production of GABA are also suggested.


Asunto(s)
Corynebacterium glutamicum , Corynebacterium glutamicum/genética , Escherichia coli/genética , Fermentación , Ingeniería Metabólica , Redes y Vías Metabólicas , Ácido gamma-Aminobutírico/metabolismo
11.
Bioresour Bioprocess ; 8(1): 134, 2021 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38650283

RESUMEN

Dilute inorganic acids hydrolysis is one of the most promising pretreatment strategies with high recovery of fermentable sugars and low cost for sustainable production of biofuels and chemicals from lignocellulosic biomass. The diverse phenolics derived from lignin degradation during pretreatment are the main inhibitors for enzymatic hydrolysis and fermentation. However, the content features of derived phenolics and produced glucose under different conditions are still unclear due to the highly non-linear characteristic of biomass pretreatment. Here, an artificial neural network (ANN) model was developed for simultaneous prediction of the derived phenolic contents (CPhe) and glucose yield (CGlc) in corn stover hydrolysate before microbial fermentation by integrating dilute acid pretreatment and enzymatic hydrolysis. Six processing parameters including inorganic acid concentration (CIA), pretreatment temperature (T), residence time (t), solid-to-liquid ratio (RSL), kinds of inorganic acids (kIA), and enzyme loading dosage (E) were used as input variables. The CPhe and CGlc were set as the two output variables. An optimized topology structure of 6-12-2 in the ANN model was determined by comparing root means square errors, which has a better prediction efficiency for CPhe (R2 = 0.904) and CGlc (R2 = 0.906). Additionally, the relative importance of six input variables on CPhe and CGlc was firstly calculated by the Garson equation with net weight matrixes. The results indicated that CIA had strong effects (22%-23%) on CPhe or CGlc, then followed by E and T. In conclusion, the findings provide new insights into the sustainable development and inverse optimization of biorefinery process from ANN modeling perspectives.

12.
Artículo en Inglés | MEDLINE | ID: mdl-32363180

RESUMEN

Highly efficient and regioselective synthesis of pharmacologically interesting aromatic esters of arbutin catalyzed by immobilized lipase from Penicillium expansum in co-solvent systems was successfully carried out. As compared to tetrahydrofuran solvent, the initial rate and substrate conversion of arbutin vanilylation were markedly enhanced in tetrahydrofuran-isopropyl ether (20%, v/v). Moreover, the effects of three reaction parameters (enzyme amount, temperature and substrate molar ratio of vinyl vanillic acid to arbutin) on 6'-O-vanilloyl-arbutin synthesis were scrutinized and the key process parameters were optimized using response surface methodology (RSM). The experimental data were fitted well to a second order polynomial model by using multiple regression analysis. The best combination of variables was 50°C, 93 U/mL and 11 for the reaction temperature, the enzyme amount and mole ratio of arbutin to vinyl vanilic acid, respectively, and which the reaction rate, substrate conversion and regioselectivity were as high as 8.2 mM/h, 93 and 99%. It was worth noting that a variety of aromatic esters of arbutin were obtained with much higher conversion (93-99%) at these optimal conditions.

13.
Sci Total Environ ; 710: 136399, 2020 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-31923698

RESUMEN

Lignocellulosic biomass is considered abundant renewable feedstock to constitute a green and environmentally friendly approach for biofuels (bio-butanol) production as an effective substitute for fossil resources. However, a variety of fermentable inhibitors can be generated in hydrolysates during the biomass pretreatment process. Among them, phenolics including phenolic acids and phenolic aldehydes are the most toxic inhibitors to solventogenic clostridia for bio-butanol production. This study elucidates the physiological mechanism of Clostridium acetobutylicum ATCC 824 response to phenolic inhibitors by the integration of kinetics and transcriptional analysis. Butanol fermentations were stressed by 0.4 g/L phenolic acids or 0.4 g/L phenolic aldehydes at 12 h at the beginning of solventogenesis. With post-stress for 12 h, butanol titer was 7.01 g/L in fermentation with phenolic acid stress, while only 5.82 g/L butanol was produced in the case of phenolic aldehydes stress. Reductions in the two fermentations were 27.6% and 40.0% in comparison with the control (without stress), indicated that phenolic aldehydes had a stronger inhibitory effect on solvents synthesis in C. acetobutylicum than phenolic acids. Additionally, the transcriptional analysis revealed that phenolics altered the gene expression profiles related to membrane transporters such as ATP-binding cassette (ABC)-transporter and phosphotransferase system (PTS), glycolysis, and heat shock proteins. The lower expression levels of PTS-related genes might result in reduced glucose consumption and finally inhibited solvents synthesis under phenolic aldehydes stress. Some genes encoding histidine kinase (CA_C0323, CA_C0903, and CA_C3319) were also affected by phenolics, which might inhibit sporulation. In conclusion, our results provide valuable guidance for the construction of robust strain to efficiently produce bio-butanol from lignocellulosic biomass.


Asunto(s)
Clostridium acetobutylicum , Butanoles , Fermentación , Lignina
14.
Sheng Wu Gong Cheng Xue Bao ; 35(10): 1986-2002, 2019 Oct 25.
Artículo en Chino | MEDLINE | ID: mdl-31668043

RESUMEN

In industrial fermentation processes, bacteria have to adapt environmental stresses. Sometimes, such a self-adaption does not work and will cause fermentation failures, although such adaptation also can generate unexpected positive effects with improved fermentation performance. Our review introduces cell self-adaption to environmental variations or stress, process optimization based on such self-adaptions, with heterologous proteins production by Pichia pastoris and butanol fermentation as examples. Our review can sever as reference for fermentation optimization based on cell self-adaption.


Asunto(s)
Adaptación Fisiológica , Ambiente , Fermentación , Pichia/citología , Pichia/metabolismo , Butanoles/metabolismo
15.
RSC Adv ; 9(12): 6919-6927, 2019 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35518483

RESUMEN

Co-production of solvents (butanol, acetone, and ethanol) and organic acids (butyrate and acetate) by Clostridium acetobutylicum using lignocellulosic biomass as a substrate could further enlarge the application scope of butanol fermentation. This is mainly because solvents and organic acids could be used for production of fine chemicals such as butyl butyrate, butyl oleate, etc. However, many phenolic fermentation inhibitors are formed during the pretreatment process because of lignin degradation. The present study investigated the effects of five typical lignin-derived phenolics on the biosynthesis of solvents and organic acids in C. acetobutylicum ATCC 824. Results obtained in 100 mL anaerobic bottles indicated that butanol concentration was enhanced from 10.29 g L-1 to 11.36 g L-1 by the addition of 0.1 g L-1 vanillin. Subsequently, a pH-control strategy was proposed in a 5 L anaerobic fermenter to alleviate the "acid crash" phenomenon and improve butanol fermentation performance, simultaneously. Notably, organic acid concentration was enhanced from 6.38 g L-1 (control) to a high level of 9.21-12.57 g L-1 with vanillin or/and vanillic acid addition (0.2 g L-1) under the pH-control strategy. Furthermore, the butyrate/butanol ratio reached the highest level of 0.80 g g-1 with vanillin/vanillic acid co-addition, and solvent concentration reached 13.85 g L-1, a comparable level to the control (13.69 g L-1). The effectiveness and robustness of the strategy for solvent and organic acid co-production was also verified under five typical phenolic environments. In conclusion, these results suggest that the proposed process strategy would potentially promote butanol fermentative products from renewable biomass.

16.
Food Chem ; 274: 422-428, 2019 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-30372960

RESUMEN

The objective of this study was to characterize a plant origin ß-glucosidase from black plum seeds and identify its conformational changes in twenty-six imidazolium- and amino acid-based ionic liquids (ILs). The results revealed that the purified 60 kDa enzyme was monomeric in nature, maximally active at 55 °C and pH 5.0, and nearly completely inhibited by Hg2+ and Ag+. Attractive peculiarities of the relative low kinetic and higher glucose inhibition constants (Km = 0.58 mM [pNPG]; Ki = 193.5 mM [glucose]) demonstrated its potential applications in food industry. Circular dichroism studies showed that the secondary structural changes of the enzyme depended not only on the anions, but also on the cations of the assayed ILs. Interestingly, no corresponding relations were observed between the changes in enzyme structure induced by ILs and its catalytic activities, suggesting that the influences of ILs on enzymatic processes don't rely simply on enzyme conformational changes.


Asunto(s)
Glucosa/farmacología , Líquidos Iónicos/farmacología , Prunus domestica/enzimología , Semillas/enzimología , beta-Glucosidasa/química , beta-Glucosidasa/aislamiento & purificación , Biocatálisis , Cinética , beta-Glucosidasa/metabolismo
17.
Sci Total Environ ; 635: 1-9, 2018 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-29656055

RESUMEN

The aim of this study was to assess the potential of struvite precipitation to recover nutrients from anaerobically-processed poultry slurry and struvite's interactions with heavy metals (Zn, Cu, Pb, Cr, and Ni) and pathogens (total coliforms and Escherichia coli). The impacts of pH, Mg, N, and P molar proportion, reaction time, and mixing rate and duration were explored to determine the optimal conditions for nutrient recovery through struvite precipitation. A pH range of 9.5 to 10.5, was ideal for P and N removal and recovery, with a molar ratio of 1:1:1 for Mg:N:P. A mixing rate of 150rpm for 10min could allow nutrient recovery with little loss (3.32%) of NH3 through volatilization, and also achieve an optimal struvite crystal size (50-60µm). The results of X-ray diffractometry and scanning electron microscopy confirmed that the precipitates generated at pH9 and 10 were orthorhombic struvite. Moreover, along with the recovery of nutrients, 40, 45, 66, 30, and 20% of Zn, Cu, Pb, Cr, and Ni, respectively, and 70% total coliforms and E. coli were removed by struvite precipitation from poultry slurry. This was observed despite that the levels of contaminants (heavy metals) detected in struvite were well below the permissible limits and free of pathogens. Consequently, it was inferred that the struvite quality was reasonable by virtue of its heavy metal and pathogen content, and therefore appropriate for application in the field. Similarly, struvite precipitation has multiple benefits as it can effectively recover nutrients as well as reducing pathogenic populations.


Asunto(s)
Enterobacteriaceae/metabolismo , Metales Pesados/química , Aguas del Alcantarillado/análisis , Estruvita/análisis , Anaerobiosis , Animales , Precipitación Química , Pollos , China , Escherichia coli/metabolismo , Aguas del Alcantarillado/química , Estruvita/química
18.
Bioresour Technol ; 253: 343-354, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29329775

RESUMEN

Butyric acid is an important platform chemical, which is widely used in the fields of food, pharmaceutical, energy, etc. Microbial fermentation as an alternative approach for butyric acid production is attracting great attention as it is an environmentally friendly bioprocessing. However, traditional fermentative butyric acid production is still not economically competitive compared to chemical synthesis route, due to the low titer, low productivity, and high production cost. Therefore, reduction of butyric acid production cost by utilization of alternative inexpensive feedstock, and improvement of butyric acid production and productivity has become an important target. Recently, several advanced strategies have been developed for enhanced butyric acid production, including bioprocess techniques and metabolic engineering methods. This review provides an overview of advances and strategies in process and strain engineering for butyric acid production by microbial fermentation. Additionally, future perspectives on improvement of butyric acid production are also proposed.


Asunto(s)
Ácido Butírico , Fermentación , Clostridium tyrobutyricum , Ingeniería Metabólica
19.
Bioresour Technol ; 247: 1201-1205, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28912077

RESUMEN

The techniques for enhancing butanol production in ABE fermentation by Clostridium acetobutylicum generally focus on adding electron carrier to strengthen NADH synthesis, repressing hydrogenase by aerating CO, supplementing butyrate, etc. However, those methods suffer from the problems of total solvent decrease, high purification cost, using expensive supplemental substances, etc. In this study, we added small amount of electron receptors (Na2SO4/CaSO4, 2g/L) into ABE fermentation broth: to alter electron/proton distributions in the intracellular electron transport shuttle system, directing more electron/proton pairs into NADH synthesis route; to stimulate intracellular accumulation of those amino acids favorable for cells survival/butanol synthesis. In ABE fermentation in a 7L fermentor, adding 2g/L Na2SO4 could raise butanol concentration to a higher level of 12.96g/L, which was 34.8% higher than that of the control. Addition of tiny amount cheap electron receptor would provide a new way to enhance bio-butanol production.


Asunto(s)
Clostridium acetobutylicum , Fermentación , 1-Butanol , Butanoles , Electrones , Etanol
20.
Bioresour Technol ; 243: 755-759, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28711804

RESUMEN

The effect of iron(III) ion on microwave pyrolysis of moso bamboo was investigated. Hydrofluoric acid washing was used as a pilot process to demineralize moso bamboo in order to eliminate the influences of the other inorganics contained in moso bamboo itself. The results indicated that the addition of iron(III) ion increased the maximal reaction temperatures under microwave condition dependent on the amount of the added iron(III) ion. The production of the non-condensable gases was promoted by the addition of iron(III) ion mainly at the expense of liquid products. Iron(III) ion exhibited the positive effect for syngas production and inhibited the formation of CO2 and CH4. The formation of Fe2O3 and Fe3O4 was found during microwave pyrolysis and the mechanism of the two metallic oxides formation was described in this work.


Asunto(s)
Hierro , Microondas , Poaceae , Gases , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...