Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Aging Cell ; : e14303, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39113346

RESUMEN

Maternal age is one of the most important factors affecting the success of maternal pregnancy. Uterine aging is the leading cause of pregnancy failure in older women. However, how uterine aging affects uterine receptivity and decidualization is unclear. In this study, naturally aged one-year-old female mice were used to investigate effects of maternal age on embryo implantation during early pregnancy. In our study, we found abnormal uterine receptivity in aged mice. Aged mouse uterus indicates a decrease in nuclear LAMIN A, and an increase in PRELAMIN A and PROGERIN. In aged mouse uterus, double-stranded DNA (dsDNA) in cytoplasmic fraction is significantly increased. PROGERIN overexpression in mouse uterine epithelial cells and epithelial organoids leads to nuclear DNA leakage and impaired uterine receptivity. DNase I, DNase II, and TREX1 are obviously reduced in aged mouse uterus. Treatments with foreign DNA or STING agonist significantly downregulate uterine receptivity markers and activate cGAS-STING pathway. Uterine estrogen (E2) concentration is significantly increased in aged mice. After ovariectomized mice are treated with a high level of E2, there are significant increase of PROGERIN and cytoplasmic DNA, and activation of cGAS-STING pathway. CD14 is significantly increased in aged uterus. Intrauterine CD14 injection inhibits embryo implantation. In vitro CD14 treatment of cultured epithelial cells or epithelial organoids decreases uterine receptivity. Uterine abnormality in aged mouse can be partially rescued by STING inhibitor. In conclusion, uterine PROGERIN increase in aged mouse uterus results in cytoplasmic DNA accumulation and cGAS-STING pathway activation. CD14 secretion in aged uterus impairs uterine receptivity.

2.
Food Chem X ; 23: 101603, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-39100247

RESUMEN

Animal cell culture technology in the production of slaughter-free meat offers ethical advantages with regards to animal welfare, rendering it a more socially acceptable approach for dog meat production. In this study, edible plant-derived scaffold was used as a platform for cell expansion to construct cell-cultured dog meat slices. Primary dog skeletal muscle satellite cells (MSCs) and adipose stem cells (ASCs) were isolated and cultured as seed cells, and 3D spheroid culture in vitro promoted MSCs and ASCs myogenic and adipogenic differentiation, respectively. Natural leaf veins (NLV) were produced as edible mesh scaffolds to create 3D engineered dog muscle and fat tissues. After MSCs and ASCs adhered, proliferated and differentiated on the NLV scaffolds, and muscle and fat slices were produced with cultured dog muscle fibers and adipocytes, respectively. These findings demonstrate the potential of plant-derived NLV scaffolds in the production of cultured dog meat.

3.
FEBS J ; 2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-38973142

RESUMEN

Accumulating evidence shows that inflammation is essential for embryo implantation and decidualization. Histamine, a proinflammatory factor that is present in almost all mammalian tissues, is synthesized through decarboxylating histidine by histidine decarboxylase (HDC). Although histamine is known to be essential for decidualization, the underlying mechanism remains undefined. In the present study, histamine had no obvious direct effects on in vitro decidualization in mice. However, the obvious differences in HDC protein levels between day 4 of pregnancy and day 4 of pseudopregnancy, as well as between delayed and activated implantation, suggested that the blastocyst may be involved in regulating HDC expression. Furthermore, blastocyst-derived tumor necrosis factor α (TNFα) significantly increased HDC levels in the luminal epithelium. Histamine increased the levels of amphiregulin (AREG) and disintegrin and metalloproteinase domain-containing protein 17 (ADAM17) proteins, which was abrogated by treatment with famotidine, a specific histamine type 2 receptor (H2R) inhibitor, or by TPAI-1 (a specific inhibitor of ADAM17). Intraluminal injection of urocanic acid (HDC inhibitor) on day 4 of pregnancy significantly reduced the number of implantation sites on day 5 of pregnancy. TNFα-stimulated increases in HDC, AREG and ADAM17 protein levels was abrogated by urocanic acid, a specific inhibitor of HDC. Additionally, AREG treatment significantly promoted in vitro decidualization. Collectively, our data suggests that blastocyst-derived TNFα induces luminal epithelial histamine secretion, and histamine increases mouse decidualization through ADAM17-mediated AREG release.

4.
Front Endocrinol (Lausanne) ; 15: 1356914, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38752181

RESUMEN

Introduction: Nutritional deficiency occurs frequently during pregnancy and breastfeeding. Tryptophan (Trp), an essential amino acid which is critical for protein synthesis, serves as the precursor for serotonin, melatonin, and kynurenine (Kyn). The imbalance between serotonin and kynurenine pathways in Trp metabolism is closely related to inflammation and depression. This study assessed the effects of Trp deficiency on mouse early pregnancy. Methods: Embryo implantation and decidualization were analyzed after female mice had been fed diets containing 0.2% Trp (for the control group), 0.062% Trp (for the low Trp group) and 0% Trp (for the Trp-free group) for two months. The uteri of the mice were collected on days 4, 5, and 8 of pregnancy for further analysis. Results: On day 8 of pregnancy, the number of implantation sites were found to be similar between the control and the low Trp groups. However, no implantation sites were detected in the Trp-free group. On day 5 of pregnancy, plane polarity- and decidualization-related molecules showed abnormal expression pattern in the Trp-free group. On day 4 of pregnancy, there was no significant difference in uterine receptivity molecules between the low-Trp group and the control group, but uterine receptivity was abnormal in the Trp-free group. At implantation sites of the Trp-free group, IDO and AHR levels were markedly elevated. This potentially increased levels of Kyn, 2-hydroxy estradiol, and 4-hydroxy estradiol to affect decidualization. Conclusions: Trp-free diet may impair decidualization via the IDO-KYN-AHR pathway.


Asunto(s)
Decidua , Implantación del Embrión , Triptófano , Animales , Femenino , Implantación del Embrión/fisiología , Implantación del Embrión/efectos de los fármacos , Triptófano/metabolismo , Ratones , Embarazo , Decidua/metabolismo , Dieta , Quinurenina/metabolismo
5.
BMC Vet Res ; 20(1): 110, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38500105

RESUMEN

BACKGROUND: Traumatic brain injury (TBI) is a common condition in veterinary medicine that is difficult to manage.Veterinary regenerative therapy based on adipose mesenchymal stem cells seem to be an effective strategy for the treatment of traumatic brain injury. In this study, we evaluated therapeutic efficacy of canine Adipose-derived mesenchymal stem cells (AD-MSCs)in a rat TBI model, in terms of improved nerve function and anti-neuroinflammation. RESULTS: Canine AD-MSCs promoted neural functional recovery, reduced neuronal apoptosis, and inhibited the activation of microglia and astrocytes in TBI rats. According to the results in vivo, we further investigated the regulatory mechanism of AD-MSCs on activated microglia by co-culture in vitro. Finally, we found that canine AD-MSCs promoted their polarization to the M2 phenotype, and inhibited their polarization to the M1 phenotype. What's more, AD-MSCs could reduce the migration, proliferation and Inflammatory cytokines of activated microglia, which is able to inhibit inflammation in the central system. CONCLUSIONS: Collectively, the present study demonstrates that transplantation of canine AD-MSCs can promote functional recovery in TBI rats via inhibition of neuronal apoptosis, glial cell activation and central system inflammation, thus providing a theoretical basis for canine AD-MSCs therapy for TBI in veterinary clinic.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Enfermedades de los Perros , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Enfermedades de los Roedores , Ratas , Animales , Perros , Lesiones Traumáticas del Encéfalo/terapia , Lesiones Traumáticas del Encéfalo/veterinaria , Microglía , Macrófagos , Inflamación/veterinaria , Trasplante de Células Madre Mesenquimatosas/veterinaria , Trasplante de Células Madre Mesenquimatosas/métodos
6.
Int J Mol Sci ; 24(4)2023 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-36834576

RESUMEN

Decidualization is necessary for the successful establishment of early pregnancy in rodents and humans. Disturbed decidualization results in recurrent implantation failure, recurrent spontaneous abortion, and preeclampsia. Tryptophan (Trp), one of the essential amino acids in humans, has a positive effect on mammalian pregnancy. Interleukin 4-induced gene 1 (IL4I1) is a recently identified enzyme that can metabolize L-Trp to activate aryl hydrocarbon receptor (AHR). Although IDO1-catalyzed kynurenine (Kyn) from Trp has been shown to enhance human in vitro decidualization via activating AHR, whether IL4I1-catalyzed metabolites of Trp are involved in human decidualization is still unknown. In our study, human chorionic gonadotropin stimulates IL4I1 expression and secretion from human endometrial epithelial cells through ornithine decarboxylase-induced putrescine production. Either IL4I1-catalyzed indole-3-pyruvic acid (I3P) or its metabolite indole-3-aldehyde (I3A) from Trp is able to induce human in vitro decidualization by activating AHR. As a target gene of AHR, Epiregulin induced by I3P and I3A promotes human in vitro decidualization. Our study indicates that IL4I1-catalyzed metabolites from Trp can enhance human in vitro decidualization through AHR-Epiregulin pathway.


Asunto(s)
Interleucina-4 , Receptores de Hidrocarburo de Aril , Animales , Humanos , Epirregulina , Receptores de Hidrocarburo de Aril/metabolismo , Triptófano/metabolismo , Quinurenina/metabolismo , Gonadotropina Coriónica , Mamíferos/metabolismo , L-Aminoácido Oxidasa
7.
BMC Vet Res ; 17(1): 272, 2021 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-34384449

RESUMEN

BACKGROUND: Exosomes, internal proteins, lipids, and nucleic acids coated by phospholipid bilayer membranes, are one type of small extracellular vesicles, which can mediate cell-cell communication. In recent years, exosomes have gained considerable scientific interest due to their widely applied prospect in the diagnosis and therapeutics of human and animal diseases. In this study, we describe for the first time a feasible method designed to isolate and characterize exosomes from feline plasma, urine and adipose-derived mesenchymal stem cells. RESULTS: Exosomes from feline plasma, urine and adipose-derived mesenchymal stem cells were successfully isolated by differential centrifugation. Quantification and sizing of exosomes were assessed by transmission electron microscopy, flow nano analysis and western blotting. Detected particles showed the normal size (30-100 nm) and morphology described for exosomes, as well as presence of the transmembrane protein (TSG101, CD9, CD63, and CD81) known as exosomal marker. CONCLUSIONS: The results suggest that differential centrifugation is a feasible method for isolation of exosomes from different types of feline samples. Moreover, these exosomes can be used to further diagnosis and therapeutics in veterinary pre-clinical and clinical studies.


Asunto(s)
Gatos/sangre , Gatos/orina , Exosomas/fisiología , Células Madre Mesenquimatosas/fisiología , Animales , Femenino , Masculino , Plasma
8.
BMC Vet Res ; 17(1): 96, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33648493

RESUMEN

BACKGROUND: Mesenchymal stem cells (MSCs) have generated a great amount of interest in recent years as a novel therapeutic application for improving the quality of pet life and helping them free from painful conditions and diseases. It has now become critical to address the challenges related to the safety and efficacy of MSCs expanded in vitro. In this study, we establish a standardized process for manufacture of canine adipose-derived MSCs (AD-MSCs), including tissue sourcing, cell isolation and culture, cryopreservation, thawing and expansion, quality control and testing, and evaluate the safety and efficacy of those cells for clinical applications. RESULTS: After expansion, the viability of AD-MSCs manufactured under our standardized process was above 90 %. Expression of surface markers and differentiation potential was consistent with ISCT standards. Sterility, mycoplasma, and endotoxin tests were consistently negative. AD-MSCs presented normal karyotype, and did not form in vivo tumors. No adverse events were noted in the case treated with intravenously AD-MSCs. CONCLUSIONS: Herein we demonstrated the establishment of a feasible bioprocess for manufacturing and banking canine AD-MSCs for veterinary clinical use.


Asunto(s)
Tejido Adiposo/citología , Trasplante de Células Madre Mesenquimatosas/veterinaria , Células Madre Mesenquimatosas/citología , Bancos de Tejidos , Animales , Pruebas de Carcinogenicidad , Técnicas de Cultivo de Célula/veterinaria , Separación Celular/veterinaria , Criopreservación/veterinaria , Perros , Femenino , Leucopenia/veterinaria , Masculino , Ratones SCID , Infecciones por Parvoviridae/terapia , Infecciones por Parvoviridae/veterinaria , Parvovirus , Control de Calidad
9.
Int J Mol Sci ; 20(6)2019 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-30934541

RESUMEN

Mesenchymal stem cells (MSCs) are the most promising seed cells for cell therapy. Comparing the biological and transcriptome gene characteristics of MSCs from different sources provides an important basis for the screening of clinically used cells. The main purpose of this experiment was to establish methods for the isolation and culture of MSCs from five different canine sources, including adipose tissue, bone marrow, umbilical cord, amniotic membrane, and placenta, and compare biological and transcriptome characteristics of MSCs, in order to provide a basis for the clinical application of canine MSCs. MSCs were isolated from Chinese pastoral dogs, and the following experiments were performed: (1) the third, sixth, and ninth generations of cells were counted, respectively, and a growth curve was plotted to calculate the MSC population doubling time; (2) the expression of CD34 and CD44 surface markers was studied by immunofluorescence; (3) the third generation of cells were used for osteogenetic and adipogenic differentiation experiments; and (4) MSC transcriptome profiles were performed using RNA sequencing. All of the five types of MSCs showed fibroblast-like adherent growth. The cell surface expressed CD44 instead of CD34; the third-generation MSCs had the highest proliferative activity. The average population doubling time of adipose mesenchymal stem cells (AD-MSCs), placenta mesenchymal stem cells (P-MSCs), bone marrow mesenchymal stem cells (BM-MSCs), umbilical cord mesenchymal stem cells (UC-MSCs), and amniotic mesenchymal stem cells (AM-MSCs) were 15.8 h, 21.2 h, 26.2 h, 35 h, and 41.9 h, respectively. All five types of MSCs could be induced to differentiate into adipocytes and osteoblasts in vitro, with lipid droplets appearing after 8 days and bone formation occurring 5 days after AD-MSC induction. However, the multilineage differentiation for the remaining of MSCs was longer compared to that of the AD-MSCs. The MSC transcriptome profiles showed that AD-MSC and BM-MSCs had the highest homology, while P-MSCs were significantly different compared to the other four types of MSCs. All the isolated MSCs had the main biological characteristics of MSCs. AD-MSCs had the shortest time for proliferation, adipogenesis, and osteogenic differentiation.


Asunto(s)
Perros/genética , Células Madre Mesenquimatosas/metabolismo , Especificidad de Órganos/genética , Transcriptoma/genética , Animales , Biomarcadores/metabolismo , Adhesión Celular , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Análisis por Conglomerados , Regulación de la Expresión Génica , Células Madre Mesenquimatosas/citología , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA