Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Mol Psychiatry ; 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459194

RESUMEN

Cognitive and behavioral rigidity are observed in various psychiatric diseases, including in autism spectrum disorder (ASD). However, the underlying mechanism remains to be elucidated. In this study, we found that neuroligin-3 (NL3) R451C knockin mouse model of autism (KI mice) exhibited deficits in behavioral flexibility in choice selection tasks. Single-unit recording of medium spiny neuron (MSN) activity in the nucleus accumbens (NAc) revealed altered encoding of decision-related cue and impaired updating of choice anticipation in KI mice. Additionally, fiber photometry demonstrated significant disruption in dynamic mesolimbic dopamine (DA) signaling for reward prediction errors (RPEs), along with reduced activity in medial prefrontal cortex (mPFC) neurons projecting to the NAc in KI mice. Interestingly, NL3 re-expression in the mPFC, but not in the NAc, rescued the deficit of flexible behaviors and simultaneously restored NAc-MSN encoding, DA dynamics, and mPFC-NAc output in KI mice. Taken together, this study reveals the frontostriatal circuit dysfunction underlying cognitive inflexibility and establishes a critical role of the mPFC NL3 deficiency in this deficit in KI mice. Therefore, these findings provide new insights into the mechanisms of cognitive and behavioral inflexibility and potential intervention strategies.

2.
Nat Commun ; 14(1): 7476, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37978295

RESUMEN

As a major neuron type in the brain, the excitatory neuron (EN) regulates the lifespan in C. elegans. How the EN acquires senescence, however, is unknown. Here, we show that growth differentiation factor 11 (GDF11) is predominantly expressed in the EN in the adult mouse, marmoset and human brain. In mice, selective knock-out of GDF11 in the post-mitotic EN shapes the brain ageing-related transcriptional profile, induces EN senescence and hyperexcitability, prunes their dendrites, impedes their synaptic input, impairs object recognition memory and shortens the lifespan, establishing a functional link between GDF11, brain ageing and cognition. In vitro GDF11 deletion causes cellular senescence in Neuro-2a cells. Mechanistically, GDF11 deletion induces neuronal senescence via Smad2-induced transcription of the pro-senescence factor p21. This work indicates that endogenous GDF11 acts as a brake on EN senescence and brain ageing.


Asunto(s)
Caenorhabditis elegans , Factores de Diferenciación de Crecimiento , Adulto , Ratones , Humanos , Animales , Caenorhabditis elegans/metabolismo , Factores de Diferenciación de Crecimiento/genética , Factores de Diferenciación de Crecimiento/metabolismo , Envejecimiento/genética , Encéfalo/metabolismo , Neuronas/metabolismo , Proteínas Morfogenéticas Óseas
3.
Biol Psychiatry ; 94(3): 262-277, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-36842495

RESUMEN

BACKGROUND: The ventromedial prefrontal cortex has been viewed as a locus for storage and recall of extinction memory. However, the synaptic and cellular mechanisms underlying these processes remain elusive. METHODS: We combined transgenic mice, electrophysiological recording, activity-dependent cell labeling, and chemogenetic manipulation to analyze the role of adaptor protein APPL1 in the ventromedial prefrontal cortex in fear extinction retrieval. RESULTS: We found that both constitutive and conditional APPL1 knockout decreased NMDA receptor (NMDAR) function in the ventromedial prefrontal cortex and impaired fear extinction retrieval. Moreover, APPL1 undergoes nuclear translocation during extinction retrieval. Blocking APPL1 nucleocytoplasmic translocation reduced NMDAR currents and disrupted extinction retrieval. We also identified a prefrontal neuronal ensemble that is both necessary and sufficient for the storage of extinction memory. Inducible APPL1 knockout in this ensemble abolished NMDAR-dependent synaptic potentiation and disrupted extinction retrieval, while chemogenetic activation of this ensemble simultaneously rescued the impaired behaviors. CONCLUSIONS: Our results indicate that a prefrontal neuronal ensemble stores extinction memory, and APPL1 signaling supports these neurons in retrieving extinction memory by controlling NMDAR-dependent potentiation.


Asunto(s)
Extinción Psicológica , Miedo , Ratones , Animales , Extinción Psicológica/fisiología , Miedo/fisiología , Receptores de N-Metil-D-Aspartato/metabolismo , Neuronas/fisiología , Transducción de Señal , Corteza Prefrontal/metabolismo , Ratones Transgénicos
4.
Cell Rep ; 41(10): 111771, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36476879

RESUMEN

Neuroligins (NLs), a family of postsynaptic cell-adhesion molecules, have been associated with autism spectrum disorder. We have reported that dysfunction of the medial prefrontal cortex (mPFC) leads to social deficits in an NL3 R451C knockin (KI) mouse model of autism. However, the underlying molecular mechanism remains unclear. Here, we find that N-methyl-D-aspartate receptor (NMDAR) function and parvalbumin-positive (PV+) interneuron number and expression are reduced in the mPFC of the KI mice. Selective knockdown of NMDAR subunit GluN1 in the mPFC PV+ interneuron decreases its intrinsic excitability. Restoring NMDAR function by its partial agonist D-cycloserine rescues the PV+ interneuron dysfunction and social deficits in the KI mice. Interestingly, early D-cycloserine administration at adolescence prevents adult KI mice from social deficits. Together, our results suggest that NMDAR hypofunction and the resultant PV+ interneuron dysfunction in the mPFC may constitute a central node in the pathogenesis of social deficits in the KI mice.


Asunto(s)
Trastorno del Espectro Autista , Parvalbúminas , Animales , Ratones , Receptores de N-Metil-D-Aspartato , Conducta Social
5.
Front Mol Neurosci ; 14: 720984, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34720871

RESUMEN

Objective: The objective of this study is to explore the role of GRIN2A gene in idiopathic generalized epilepsies and the potential underlying mechanism for phenotypic variation. Methods: Whole-exome sequencing was performed in a cohort of 88 patients with idiopathic generalized epilepsies. Electro-physiological alterations of the recombinant N-methyl-D-aspartate receptors (NMDARs) containing GluN2A mutants were examined using two-electrode voltage-clamp recordings. The alterations of protein expression were detected by immunofluorescence staining and biotinylation. Previous studies reported that epilepsy related GRIN2A missense mutations were reviewed. The correlation among phenotypes, functional alterations, and molecular locations was analyzed. Results: Three novel heterozygous missense GRIN2A mutations (c.1770A > C/p.K590N, c.2636A > G/p.K879R, and c.3199C > T/p.R1067W) were identified in three unrelated cases. Electrophysiological analysis demonstrated R1067W significantly increased the current density of GluN1/GluN2A NMDARs. Immunofluorescence staining indicated GluN2A mutants had abundant distribution in the membrane and cytoplasm. Western blotting showed the ratios of surface and total expression of the three GluN2A-mutants were significantly increased comparing to the wild type. Further analysis on the reported missense mutations demonstrated that mutations with severe gain-of-function were associated with epileptic encephalopathy, while mutations with mild gain of function were associated with mild phenotypes, suggesting a quantitative correlation between gain-of-function and phenotypic severity. The mutations located around transmembrane domains were more frequently associated with severe phenotypes and absence seizure-related mutations were mostly located in carboxyl-terminal domain, suggesting molecular sub-regional effects. Significance: This study revealed GRIN2A gene was potentially a candidate pathogenic gene of idiopathic generalized epilepsies. The functional quantitative correlation and the molecular sub-regional implication of mutations helped in explaining the relatively mild clinical phenotypes and incomplete penetrance associated with GRIN2A variants.

6.
RSC Adv ; 11(6): 3202-3208, 2021 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-35424310

RESUMEN

In this work, an outstanding nanolayered tin phosphate with 15.0 Å interlayer spacing, Sn (HPO4)2·3H2O (SnP-H+), has been synthesized by conventional hydrothermal method and first used in the adsorptive removal of Cr(iii) from aqueous solution. A number of factors such as contact time, initial concentration of Cr(iii), temperature, pH, and ionic strength on adsorption were investigated by batch tests. Moreover, the isothermal adsorption characteristics and kinetic model of Cr(iii) onto SnP-H+ were studied. The results showed that the adsorption of Cr(iii) by SnP-H+ was in accordance with the Langmuir adsorption isotherm model and the pseudo-second-order kinetic model. The adsorption capacity of Cr(iii) onto SnP-H+ at temperature 40.0 °C and pH 3.0 could reach 81.1 mg g-1. And the distribution coefficient K d was 23.0 g L-1. Overall, experiments certified that SnP-H+ was an excellent adsorbent that can effectively remove Cr(iii) from aqueous solution.

7.
Cell Rep ; 33(6): 108369, 2020 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-33176141

RESUMEN

Nerve injury in somatosensory pathways may lead to neuropathic pain, which affects the life quality of ∼8% of people. Long-term enhancement of excitatory synaptic transmission along somatosensory pathways contributes to neuropathic pain. Caspase 3 (Casp3) plays a non-apoptotic role in the hippocampus and regulates internalization of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) subunits. Whether Casp3-AMPAR interaction is involved in the maintenance of peripheral hypersensitivity after nerve injury remained unknown. Here, we show that nerve injury suppresses long-term depression (LTD) and downregulates Casp3 in the anterior cingulate cortex (ACC). Interfering with interactions between Casp3 and AMPAR subunits or reducing Casp3 activity in the ACC suppresses LTD induction and causes peripheral hypersensitivity. Overexpression of Casp3 restores LTD and reduces peripheral hypersensitivity after nerve injury. We reveal how Casp3 is involved in the maintenance of peripheral hypersensitivity. Our findings suggest that restoration of LTD via Casp3 provides a therapeutic strategy for neuropathic pain management.


Asunto(s)
Caspasa 3/metabolismo , Depresión/genética , Giro del Cíngulo/fisiopatología , Neuralgia/fisiopatología , Humanos
8.
Front Cell Neurosci ; 13: 518, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31849609

RESUMEN

Neuroligins (NLs) are a group of postsynaptic cell adhesion molecules that function in synaptogenesis and synaptic transmission. Genetic defects in neuroligin 3 (NL3), a member of the NL protein family, are associated with autism. Studies in rodents have revealed that mutations of NL3 gene lead to increased growth and complexity in dendrites in the central nervous system. However, the detailed mechanism is still unclear. In our study, we found that deficiency of NL3 led to morphological changes of the pyramidal neurons in layer II/III somatosensory cortex in mice, including enlarged somata, elongated dendritic length, and increased dendritic complexity. Knockdown of NL3 in cultured rat neurons upregulated Akt/mTOR signaling, resulting in both increased protein synthesis and dendritic growth. Treating neurons with either rapamycin to inhibit the mTOR or LY294002 to inhibit the PI3K/Akt activity rescued the morphological abnormalities resulting from either NL3 knockdown or knockout (KO). In addition, we found that the hyperactivated Akt/mTOR signaling associated with NL3 defects was mediated by a reduction in phosphatase and tensin (PTEN) expression, and that MAGI-2, a scaffold protein, interacted with both NL3 and PTEN and could be a linker between NL3 and Akt/mTOR signaling pathway. In conclusion, our results suggest that NL3 regulates neuronal morphology, especially dendritic outgrowth, by modulating the PTEN/Akt/mTOR signaling pathway, probably via MAGI-2. Thereby, this study provides a new link between NL3 and neuronal morphology.

9.
Cell Rep ; 27(12): 3684-3695.e4, 2019 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-31216484

RESUMEN

cADPR is a well-recognized signaling molecule by modulating the RyRs, but considerable debate exists regarding whether cADPR can bind to and gate the TRPM2 channel, which mediates oxidative stress signaling in diverse physiological and pathological processes. Here, we show that purified cADPR evoked TRPM2 channel currents in both whole-cell and cell-free single-channel recordings and specific binding of cADPR to the purified NUDT9-H domain of TRPM2 by surface plasmon resonance. Furthermore, by combining computational modeling with electrophysiological recordings, we show that the TRPM2 channels carrying point mutations at H1346, T1347, L1379, S1391, E1409, and L1484 possess distinct sensitivity profiles for ADPR and cADPR. These results clearly indicate cADPR is a bona fide activator at the TRPM2 channel and clearly delineate the structural basis for cADPR binding, which not only lead to a better understanding in the gating mechanism of TRPM2 channel but also shed light on a cADPR-induced RyRs-independent Ca2+ signaling mechanism.


Asunto(s)
ADP-Ribosil Ciclasa/metabolismo , Adenosina Difosfato Ribosa/metabolismo , Calcio/metabolismo , Pirofosfatasas/metabolismo , Canales Catiónicos TRPM/metabolismo , ADP-Ribosil Ciclasa/química , ADP-Ribosil Ciclasa/genética , Sitios de Unión , Células HEK293 , Humanos , Mutación Puntual , Conformación Proteica , Pirofosfatasas/química , Pirofosfatasas/genética , Canales Catiónicos TRPM/química , Canales Catiónicos TRPM/genética
10.
Neurosci Bull ; 35(3): 497-506, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30790215

RESUMEN

Neuroligins (NLs) are postsynaptic cell-adhesion proteins that play important roles in synapse formation and the excitatory-inhibitory balance. They have been associated with autism in both human genetic and animal model studies, and affect synaptic connections and synaptic plasticity in several brain regions. Yet current research mainly focuses on pyramidal neurons, while the function of NLs in interneurons remains to be understood. To explore the functional difference among NLs in the subtype-specific synapse formation of both pyramidal neurons and interneurons, we performed viral-mediated shRNA knockdown of NLs in cultured rat cortical neurons and examined the synapses in the two major types of neurons. Our results showed that in both types of neurons, NL1 and NL3 were involved in excitatory synapse formation, and NL2 in GABAergic synapse formation. Interestingly, NL1 affected GABAergic synapse formation more specifically than NL3, and NL2 affected excitatory synapse density preferentially in pyramidal neurons. In summary, our results demonstrated that different NLs play distinct roles in regulating the development and balance of excitatory and inhibitory synapses in pyramidal neurons and interneurons.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/fisiología , Interneuronas/fisiología , Proteínas de la Membrana/fisiología , Proteínas del Tejido Nervioso/fisiología , Células Piramidales/fisiología , Sinapsis/fisiología , Animales , Células Cultivadas , Corteza Cerebral/embriología , Corteza Cerebral/fisiología , Neuronas GABAérgicas/fisiología , Isoformas de Proteínas/fisiología , Ratas Sprague-Dawley
11.
Front Mol Neurosci ; 11: 447, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30574069

RESUMEN

Huntington-interacting protein 1-related protein (HIP1R) was identified on the basis of its structural homology with HIP1. Based on its domain structure, HIP1R is a putative endocytosis-related protein. Our previous study had shown that knockdown of HIP1R induces a dramatic decrease of dendritic growth and branching in cultured rat hippocampal neurons. However, the underlying mechanism remains elucidative. In this study, we found that knockdown of HIP1R impaired the endocytosis of activated epidermal growth factor receptor (EGFR) and the consequent activation of the downstream ERK and Akt proteins. Meanwhile, it blocked the EGF-induced dendritic outgrowth. We also showed that the HIP1R fragment, amino acids 633-822 (HIP1R633-822), interacted with EGFR and revealed a dominant negative effect in disrupting the HIP1R-EGFR interaction-mediated neuronal development. Collectively, these results reveal a novel mechanism that HIP1R plays a critical role in neurite initiation and dendritic branching in cultured hippocampal neurons via mediating the endocytosis of EGFR and downstream signaling.

12.
Zhongguo Dang Dai Er Ke Za Zhi ; 20(6): 508-513, 2018 Jun.
Artículo en Chino | MEDLINE | ID: mdl-29972128

RESUMEN

OBJECTIVE: To explore the feasibility of intraperitoneal injection of isoproterenol (ISO) to induce cardiac remodeling in FVB/N mice. METHODS: Forty-eight FVB/N mice were divided into back subcutaneous saline group (subcutaneous saline group), intraperitoneal saline group, back subcutaneous ISO group (subcutaneous ISO group), and intraperitoneal ISO group according to the route of administration of saline or ISO. ISO (30 µg/g body weight/day) was given to the subcutaneous ISO group and the intraperitoneal ISO group, twice daily with an interval of 12 hours, for 14 consecutive days. The subcutaneous saline group and the intraperitoneal saline group were injected with an equal volume of saline. The left ventricular end-diastolic posterior wall thickness was measured by echocardiography, and the ratio of heart weight to tibia length was determined. Hematoxylin-eosin staining was used to determine the myocardial fiber diameter. Picric-sirius red staining was used to determine the myocardial collagen deposition area. Quantitative real-time PCR was used to measure the mRNA expression of collagen I. RESULTS: Compared with the subcutaneous ISO, subcutaneous saline, and intraperitoneal saline groups, the intraperitoneal ISO group had increased sizes of the cardiac cavity and the heart. Compared with the subcutaneous saline and intraperitoneal saline groups, the subcutaneous ISO group showed no significant changes in the gross morphology of the cardiac cavity and the heart. The intraperitoneal ISO group showed significant increases in the ratio of heart weight to tibia length, myocardial fiber diameter, left ventricular end-diastolic posterior wall thickness, myocardial collagen area percentage, and the mRNA expression of collagen I compared with the subcutaneous ISO, subcutaneous saline, and intraperitoneal saline groups (P<0.01). There were no significant differences in the above five indices between the subcutaneous ISO group and the subcutaneous saline and intraperitoneal saline groups (P>0.05). No significant difference in the mortality rate was found between the subcutaneous ISO and intraperitoneal ISO groups (P>0.05). CONCLUSIONS: Intraperitoneal injection of ISO can induce cardiac hypertrophy and fibrosis in FVB/N mice.


Asunto(s)
Remodelación Atrial/efectos de los fármacos , Enfermedades Cardiovasculares/tratamiento farmacológico , Isoproterenol/administración & dosificación , Animales , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/patología , Enfermedades Cardiovasculares/fisiopatología , Colágeno/metabolismo , Modelos Animales de Enfermedad , Humanos , Inyecciones Intraperitoneales , Masculino , Ratones , Miocardio/metabolismo , Miocardio/patología
14.
Neuron ; 97(6): 1253-1260.e7, 2018 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-29503190

RESUMEN

Neuroligins (NLs) are critical for synapse formation and function. NL3 R451C is an autism-associated mutation. NL3 R451C knockin (KI) mice exhibit autistic behavioral abnormalities, including social novelty deficits. However, neither the brain regions involved in social novelty nor the underlying mechanisms are clearly understood. Here, we found decreased excitability of fast-spiking interneurons and dysfunction of gamma oscillation in the medial prefrontal cortex (mPFC), which contributed to the social novelty deficit in the KI mice. Neuronal firing rates and phase-coding abnormalities were also detected in the KI mice during social interactions. Interestingly, optogenetic stimulation of parvalbumin interneurons in the mPFC at 40 Hz nested at 8 Hz positively modulated the social behaviors of mice and rescued the social novelty deficit in the KI mice. Our findings suggest that gamma oscillation dysfunction in the mPFC leads to social deficits in autism, and manipulating mPFC PV interneurons may reverse the deficits in adulthood.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/genética , Moléculas de Adhesión Celular Neuronal/metabolismo , Ritmo Gamma/fisiología , Aprendizaje por Laberinto/fisiología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Corteza Prefrontal/metabolismo , Conducta Social , Animales , Trastorno Autístico/genética , Trastorno Autístico/fisiopatología , Técnicas de Sustitución del Gen/métodos , Células HEK293 , Humanos , Masculino , Ratones , Ratones Transgénicos , Optogenética/métodos , Corteza Prefrontal/fisiopatología , Distribución Aleatoria
16.
J Zhejiang Univ Sci B ; 19(1): 1-5, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29308603

RESUMEN

Publication citation-based research evaluation, even if only in support of peer review, is not everywhere, on every level, or for everyone suitable, because of differences in scientific research, patterns of research output, stages of scientific evolution, and merits-scientific or societal-of scientific results.


Asunto(s)
Bibliometría , Educación de Postgrado , Universidades , China , Curriculum , Humanos , Publicaciones , Edición , Investigación , Recursos Humanos
17.
Neurosci Bull ; 34(2): 237-246, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28936771

RESUMEN

N-methyl-D-aspartate receptors (NMDARs), a subtype of glutamate-gated ion channels, play a central role in epileptogenesis. Recent studies have identified an increasing number of GRIN2A (a gene encoding the NMDAR GluN2A subunit) mutations in patients with epilepsy. Phenotypes of GRIN2A mutations include epilepsy-aphasia disorders and other epileptic encephalopathies, which pose challenges in clinical treatment. Here we identified a heterozygous GRIN2A mutation (c.1341T>A, p.N447K) from a boy with Rolandic epilepsy by whole-exome sequencing. The patient became seizure-free with a combination of valproate and lamotrigine. Functional investigation was carried out using recombinant NMDARs containing a GluN2A-N447K mutant that is located in the ligand-binding domain of the GluN2A subunit. Whole-cell current recordings in HEK 293T cells revealed that the N447K mutation increased the NMDAR current density by ~1.2-fold, enhanced the glutamate potency by 2-fold, and reduced the sensitivity to Mg2+ inhibition. These results indicated that N447K is a gain-of-function mutation. Interestingly, alternative substitutions by alanine and glutamic acid at the same residue (N447A and N447E) did not change NMDAR function, suggesting a residual dependence of this mutation in altering NMDAR function. Taken together, this study identified human GluN2A N447K as a novel mutation associated with epilepsy and validated its functional consequences in vitro. Identification of this mutation is also helpful for advancing our understanding of the role of NMDARs in epilepsy and provides new insights for precision therapeutics in epilepsy.


Asunto(s)
Epilepsia Rolándica/genética , Receptores de N-Metil-D-Aspartato/genética , Adolescente , Humanos , Masculino , Mutación
18.
Neurosci Bull ; 34(3): 549-565, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29124671

RESUMEN

Epilepsy is one of the most common neurological diseases. Of all cases, 70%-80% are considered to be due to genetic factors. In recent years, a large number of genes have been identified as being involved in epilepsy. Among them, N-methyl-D-aspartate receptor (NMDAR) subunit-encoding genes represent a large proportion, suggesting an important role for NMDARs in epilepsy. In this review, we summarize and analyze the genotypes, functional alterations, and clinical aspects of NMDAR subunit mutations/variants identified from patients with epilepsy. These data will help to throw light upon the pathogenicity of these NMDAR mutations and advance our understanding of the subtle and complicated role of NMDARs in epilepsy. It will also offer new insights into precision therapy for this disorder.


Asunto(s)
Epilepsia/genética , Predisposición Genética a la Enfermedad/genética , Mutación/genética , Receptores de N-Metil-D-Aspartato/genética , Animales , Humanos
19.
Water Sci Technol ; 76(9-10): 2313-2320, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29144289

RESUMEN

A new circular microchannel device has been proposed for the removal of chromium(III) from aqueous waste solution by using kerosene as a diluent and (2-ethylhexyl) 2-ethylhexyl phosphonate as an extractant. The proposed device has several advantages such as a flexible and easily adaptable design, easy maintenance, and cheap setup without the requirement of microfabrication. To study the extraction efficiency and advantages of the circular microchannel device in the removal of chromium(III), the effects of various operating conditions such as the inner diameter of the channel, the total flow velocity, the phase ratio, the initial pH of aqueous waste solution, the reaction temperature and the initial concentration of extractant on the extraction efficiency are investigated and the optimal process conditions are obtained. The results show that chromium(III) in aqueous waste solution can be effectively removed with (2-ethylhexyl) 2-ethylhexyl phosphonate in the circular microchannel. Under optimized conditions, an extraction efficiency of chromium(III) of more than 99% can be attained and the aqueous waste solution can be discharged directly, which can meet the Chinese national emission standards.


Asunto(s)
Cromo/aislamiento & purificación , Extracción Líquido-Líquido/métodos , Contaminantes Químicos del Agua/aislamiento & purificación , Purificación del Agua/métodos , Cromo/análisis , Concentración de Iones de Hidrógeno , Queroseno/análisis , Extracción Líquido-Líquido/instrumentación , Agua , Contaminantes Químicos del Agua/análisis , Purificación del Agua/instrumentación
20.
Curr Alzheimer Res ; 14(10): 1109-1122, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28730955

RESUMEN

BACKGROUND: Several proteins have been identified as potential diagnostic biomarkers in imaging, genetic, or proteomic studies in Alzheimer disease (AD) patients and mouse models. However, biomarkers for presymptom diagnosis of AD are still under investigation, as are the presymptom molecular changes in AD pathogenesis. OBJECTIVE: In this study, we aim to analyzed the early proteomic changes in APPSw,Ind mice and to conduct further functional studies on interesting proteins. METHODS: We used the isobaric tags for relative and absolute quantitation (iTRAQ) approach combined with mass spectrometry to examine the early proteomic changes in hippocampi of APPSw,Ind mice. Quantitative reverse transcription polymerase chain reaction (RT-PCR) and immuno-blotting were performed for further validation. Finally, the functions of interesting proteins ß-spectrin and Rab3a in APP trafficking and processing were tested by shRNA knockdown, in N2A cells stably expressing ß-amyloid precursor protein (APP). RESULTS: The iTRAQ and RT-PCR results revealed the detailed molecular changes in oxidative stress, myelination, astrocyte activation, mTOR signaling and Rab3-dependent APP trafficking in the early stage of AD progression. Knock down of ß -spectrin and Rab3a finally led to increased APP fragment production, indicating key roles of ß-spectrin and Rab3a in regulating APP processing. CONCLUSION: Our study provides the first insights into the proteomic changes that occur in the hippocampus in the early stages of the AD mouse model. In addition to improving the understanding of molecular alterations and functional cascades involved in early AD pathogenesis, our findings raise the possibility of developing potential biomarkers and therapeutic targets for early AD.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Proteoma , Proteómica/métodos , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Biomarcadores , Línea Celular Tumoral , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Hipocampo/metabolismo , Espectrometría de Masas , Ratones Transgénicos , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Espectrina/metabolismo , Proteína de Unión al GTP rab3A/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...