Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38430170

RESUMEN

Objective: This study aims to analyze the composition and distribution of pathogenic bacteria in lower respiratory tract infections (LRTI) and their antimicrobial resistance patterns in a hospital in Xinjiang, to guide more effective antibiotic selection and inform clinical management. Methods: We retrospectively analyzed 545 strains isolated from various clinical specimens like sputum and blood, collected between June 2020 and June 2023, using the LIST system. The strains were subjected to drug resistance testing, and statistical analyses included t tests and Chi-square tests. Results: Among gram-negative bacilli, Acinetobacter baumannii dominated, accounting for 32.11%, followed by Pseudomonas aeruginosa, accounting for 18.35%. Among gram-positive bacteria, thrombin-negative staphylococcus was at the top of the list, followed by Staphylococcus aureus. Among Acinetobacter baumannii (AB), carbapenem-resistant Acinetobacter baumannii plays a dominant role. The sensitivity rate of these strains to tigecycline and amikacin could reach more than 80%. The sensitivity of Pseudomonas aeruginosa (PA) to piperacillin, gentamicin, imipenem, meropenem, ciprofloxacin and levofloxacin ranged from 50% to 80%. It is worth mentioning that the sensitivity rate of PA to amikacin, cefoperazone, and tobramycin exceeded 80%. Amikacin was more than 60% sensitive to carbapenem, ß-lactam inhibitors, tigecycline, quinolones, and aminoglycosides of ESBL producing Klebsiella pneumoniae. Among gram-positive coccus, methicillin-resistant coagulase-negative staphylococcus was 100% sensitive to duration, e, tigecycline, and vancomycin. In addition, the susceptibility rate of these strains to rifampicin and linezolid was greater than 70%. Conclusions: In patients with lower respiratory tract infection (LRTI) in a hospital in Xinjiang, the most common pathogenic bacteria are gram-negative bacilli, mainly Acinetobacter baumannii and Pseudomonas aeruginosa. Both resistant and non-resistant strains showed sensitivity to amikacin and tigecycline. Additionally, staphylococcus accounted for half of the total number of gram-positive bacteria, among which methicillin-resistant strains were more sensitive to vancomycin and linezolid.

2.
Int J Clin Exp Pathol ; 8(11): 14206-13, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26823734

RESUMEN

Characteristic features of asthma include airway inflammation and hyperactivity, mucus hypersecretion, mucosal edema, and airway remodeling. These features could be due to pathological water transport across pulmonary epithelia and aquaporins (AQPs) have recently been isolated as key proteins in fluid transportation in the human respiratory tract. We aimed to evaluate the role of aquaporins in the pathogenesis of asthma and their possible use a diagnostic marker of the disease. A total of 110 hospitalized and outpatients with mild to moderate adult-onset asthma were invited to participate in this study and 34 submitted an induced sputum sample adequate for analysis. The amount of AQP1, AQP5 and MUC5AC were measured with ELISA assay. The amount of IL-2, IL-4, IL-6, IL-10, TNF-α, IFN-γ and IL-17 in both serum and sputum were measured with Cytometry Bead Array (CBA kit). Our results suggest that sputum AQP5, AQP1 and MUC5AC are all in a good correlation (r=0.498 between AQP5 and AQP1, r=0.529 and r=0.661 between MUC5AC and AQP5 or AQP1, respectively, all P<0.05). The AUC value for AQP1 and AQP5 to diagnose asthma were 0.729 and 0.745, respectively. In conclusion, water homeostasis plays an important role in maintaining adequate fluid transportation within the lung and is involved in the pathogenesis of asthma. Our results suggest that AQP may influence pulmonary physiology that their dysfunction can contribute to pulmonary pathogenesis, such as asthma. Moreover, their quantification could serve as biomarkers for the diagnosis of asthma.


Asunto(s)
Acuaporina 1/análisis , Acuaporina 5/análisis , Asma/metabolismo , Pulmón/química , Adulto , Edad de Inicio , Área Bajo la Curva , Asma/diagnóstico , Asma/fisiopatología , Biomarcadores/análisis , Estudios de Casos y Controles , Citocinas/análisis , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Mediadores de Inflamación/análisis , Pulmón/fisiopatología , Masculino , Persona de Mediana Edad , Mucina 5AC/análisis , Valor Predictivo de las Pruebas , Pronóstico , Curva ROC , Índice de Severidad de la Enfermedad , Esputo/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...