Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Appl Microbiol Biotechnol ; 108(1): 350, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38809284

RESUMEN

The African swine fever virus (ASFV) has the ability to infect pigs and cause a highly contagious acute fever that can result in a mortality rate as high as 100%. Due to the viral epidemic, the pig industry worldwide has suffered significant financial setbacks. The absence of a proven vaccine for ASFV necessitates the development of a sensitive and reliable serological diagnostic method, enabling laboratories to effectively and expeditiously detect ASFV infection. In this study, four strains of monoclonal antibodies (mAbs) against p72, namely, 5A1, 4C4, 8A9, and 5E10, were generated through recombinant expression of p72, the main capsid protein of ASFV, and immunized mice with it. Epitope localization was performed by truncated overlapping polypeptides. The results indicate that 5A1 and 4C4 recognized the amino acid 20-39 aa, 8A9 and 5E10 are recognized at 263-282 aa, which is consistent with the reported 265-280 aa epitopes. Conserved analysis revealed 20-39 aa is a high conservation of the epitopes in the ASFV genotypes. Moreover, a blocking ELISA assay for detection ASFV antibody based on 4C4 monoclonal antibody was developed and assessed. The receiver-operating characteristic (ROC) was performed to identify the best threshold value using 87 negative and 67 positive samples. The established test exhibited an area under the curve (AUC) of 0.9997, with a 95% confidence interval ranging from 99.87 to 100%. Furthermore, the test achieved a diagnostic sensitivity of 100% (with a 95% confidence interval of 95.72 to 100%) and a specificity of 98.51% (with a 95% confidence interval of 92.02 to 99.92%) when the threshold was set at 41.97%. The inter- and intra-batch coefficient of variation were below 10%, demonstrating the exceptional repeatability of the method. This method can detect the positive standard serum at a dilution as high as 1:512. Subsequently, an exceptional blocking ELISA assay was established with high diagnostic sensitivity and specificity, providing a novel tool for detecting ASFV antibodies. KEY POINTS: • Four strains of ASFV monoclonal antibodies against p72 were prepared and their epitopes were identified. • Blocking ELISA method was established based on monoclonal antibody 4C4 with an identified conservative epitope. • The established blocking ELISA method has a good effect on the detection of ASFV antibody.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Anticuerpos Monoclonales , Anticuerpos Antivirales , Proteínas de la Cápside , Ensayo de Inmunoadsorción Enzimática , Mapeo Epitopo , Animales , Anticuerpos Monoclonales/inmunología , Virus de la Fiebre Porcina Africana/inmunología , Virus de la Fiebre Porcina Africana/genética , Ensayo de Inmunoadsorción Enzimática/métodos , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Porcinos , Fiebre Porcina Africana/diagnóstico , Fiebre Porcina Africana/inmunología , Fiebre Porcina Africana/virología , Ratones , Proteínas de la Cápside/inmunología , Proteínas de la Cápside/genética , Ratones Endogámicos BALB C , Sensibilidad y Especificidad , Epítopos/inmunología
2.
Sheng Wu Gong Cheng Xue Bao ; 40(5): 1548-1558, 2024 May 25.
Artículo en Chino | MEDLINE | ID: mdl-38783815

RESUMEN

In order to generate monoclonal antibodies against the akabane virus (AKAV) N protein, this study employed a prokaryotic expression system to express the AKAV N protein. Following purification, BALB/c mice were immunized, and their splenocytes were fused with mouse myeloma cells (SP2/0) to produce hybridoma cells. The indirect ELISA method was used to screen for positive hybridoma cells. Two specific hybridoma cell lines targeting AKAV N protein, designated as 2C9 and 5E9, were isolated after three rounds of subcloning. Further characterization was conducted through ELISA, Western blotting, and indirect immunofluorescence assay (IFA). The results confirmed that the monoclonal antibodies specifically target AKAV N protein, exhibiting strong reactivity in IFA. Subtype analysis identified the heavy chain of the 2C9 mAb's as IgG2b and its light chain as κ-type; the 5E9 mAb's heavy chain was determined to be IgG1, with a κ-type light chain. Their ELISA titers reached 1:4 096 000. This study successfully developed two monoclonal antibodies targeting AKAV N protein, which lays a crucial foundation for advancing diagnostic methods for akabane disease prevention and control, as well as for studying the function of the AKAV N protein.


Asunto(s)
Anticuerpos Monoclonales , Animales , Femenino , Ratones , Anticuerpos Monoclonales/biosíntesis , Anticuerpos Monoclonales/inmunología , Anticuerpos Antivirales/inmunología , Escherichia coli/genética , Escherichia coli/metabolismo , Hibridomas/inmunología , Hibridomas/metabolismo , Ratones Endogámicos BALB C , Proteínas de la Nucleocápside/inmunología , Proteínas de la Nucleocápside/genética , Orthobunyavirus/inmunología , Orthobunyavirus/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología
3.
Int Wound J ; 21(4): e14807, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38591163

RESUMEN

Skin Cutaneous Melanoma (SKCM) is a form of cancer that originates in the pigment-producing cells, known as melanocytes, of the skin. Delay wound healing is often correlated with the occurrence of and progression of SKCM. In this comprehensive study, we investigated the intricate roles of two important wound healing genes in SKCM, including Matrix Metalloproteinase-2 (MMP2) and Matrix Metalloproteinase-9 (MMP9). Through a multi-faceted approach, we collected clinical samples, conducted molecular experiments, including RT-qPCR, bisulphite sequencing, cell culture, cell Counting Kit-8, colony formation, and wound healing assays. Beside this, we also used various other databases/tools/approaches for additional analysis including, UALCAN, GEPIA, HPA, MEXPRESS, cBioPortal, KM plotter, DrugBank, and molecular docking. Our results revealed a significant up-regulation of MMP2 and MMP9 in SKCM tissues compared to normal counterparts. Moreover, promoter methylation analysis suggested an epigenetic regulatory mechanism. Validations using TCGA datasets and immunohistochemistry emphasized the clinical relevance of MMP2 and MMP9 dysregulation. Functional assays demonstrated their synergistic impact on proliferation and migration in SKCM cells. Furthermore, we identified potential therapeutic candidates, Estradiol and Calcitriol, through drug prediction and molecular docking analyses. These compounds exhibited binding affinities, suggesting their potential as MMP2/MMP9 inhibitors. Overall, our study elucidates the diagnostic, prognostic, and therapeutic implications of MMP2 and MMP9 in SKCM, shedding light on their complex interplay in SKCM occurrence and progression.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Humanos , Melanoma/genética , Melanoma/terapia , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/terapia , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 9 de la Matriz , Simulación del Acoplamiento Molecular , Cicatrización de Heridas/genética , Mutación , Metilación
4.
Int J Biol Macromol ; 254(Pt 3): 127724, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37898252

RESUMEN

This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/policies/article-withdrawal.

5.
Am J Transl Res ; 15(10): 6026-6041, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37969191

RESUMEN

OBJECTIVES: Cancer remains a global health challenge, necessitating the identification of novel biomarkers and therapeutic targets. Cuproptosis, a recently recognized form of cell death linked to copper metabolism, presents a promising avenue for anticancer strategies. We investigated the clinical significance of SLC31A1, a key regulator of cuproptosis, in multiple cancer types, aiming to elucidate its potential as a diagnostic biomarker, prognostic, indicator and therapeutic target. METHODS: We conducted a pan-cancer analysis through TIMER2.0, evaluating SLC31A1 expression across multiple cancer types. Survival analysis was performed using KM plotter. Expression validation was carried out using UALCAN and Human Protein Atlas (HPA) databases. Methylation analysis was conducted with the help of ULACAN and OncoDB. Mutational analysis was performed using cBioPortal database. Immune infiltration analysis via the TIMER2.0 and gene enrichment analysis via the Metascape were performed to gain insights into the potential mechanisms underlying SLC31A1's role in cancer. Finally, Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was employed to confirm SLC31A1 expression in clinical samples. RESULTS: Out of analyzed cancer, SLC31A1 exhibited significant up-regulation and correlation with worse overall survival (OS) across Breast Cancer (BRCA), Cervical Squamous Cell Carcinoma (CESC), Head and Neck Squamous Cell Carcinoma (HNSC), and Esophageal Carcinoma (ESCA). Mutational and promoter methylation analyses further revealed that hypomethylation is the major cause of SLC31A1 overexpression among BRCA, CESC, HNSC, and ESCA. Immune infiltration analysis showed significant associations between SLC31A1 expression and the presence of CD8+ T cells, CD4+ T cells, and macrophages in the tumor microenvironment. Gene enrichment analysis provided valuable insights into potential molecular pathways in context to BRCA, CESC, HNSC, and ESCA. Furthermore, when SLC31A1 was analyzed using clinical samples through RT-qPCR, this gene showed promising diagnostic potential, reflected by high Area Under the Curve (AUC) values. CONCLUSION: Our pan-cancer study highlights the up-regulation of SLC31A1 and its correlation with worse OS in BRCA, CESC, HNSC, and ESCA. In sum, outcomes of this study showed that SLC31A1 could be a potential biomarker and novel therapeutic target of BRCA, CESC, HNSC, and ESCA.

6.
Microbiol Spectr ; 11(4): e0447222, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37428080

RESUMEN

Senecavirus A (SVA) is a type of nonenveloped single-stranded, positive-sense RNA virus. The VP2 protein is a structural protein that plays an important role in inducing early and late immune responses of the host. However, its antigenic epitopes have not been fully elucidated. Therefore, defining the B epitopes of the VP2 protein is of great importance to revealing its antigenic characterization. In this study, we analyzed B-cell immunodominant epitopes (IDEs) of the VP2 protein from the SVA strain CH/FJ/2017 using the Pepscan approach and a bioinformatics-based computational prediction method. The following four novel IDEs of VP2 were identified: IDE1, 41TKSDPPSSSTDQPTTT56; IDE2, 145PDGKAKSLQELNEEQW160; IDE3, 161VEMSDDYRTGKNMPF175; and IDE4, 267PYFNGLRNRFTTGT280. Most of the IDEs were highly conserved among the different strains. To our knowledge, the VP2 protein is a major protective antigen of SVA that can induce neutralizing antibodies in animals. Here, we analyzed the immunogenicity and neutralization activity of four IDEs of VP2. Consequently, all four IDEs showed good immunogenicity that could elicit specific antibodies in guinea pigs. A neutralization test in vitro showed that the peptide-specific guinea pig antisera of IDE2 could neutralize SVA strain CH/FJ/2017, and IDE2 was identified as a novel potential neutralizing linear epitope. This is the first time VP2 IDEs have been identified by using the Pepscan method and a bioinformatics-based computational prediction method. These results will help elucidate the antigenic epitopes of VP2 and clarify the basis for immune responses against SVA. IMPORTANCE The clinical symptoms and lesions caused by SVA are indistinguishable from those of other vesicular diseases in pigs. SVA has been associated with recent outbreaks of vesicular disease and epidemic transient neonatal losses in several swine-producing countries. Due to the continuing spread of SVA and the lack of commercial vaccines, the development of improved control strategies is urgently needed. The VP2 protein is a crucial antigen on the capsids of SVA particles. Furthermore, the latest research showed that VP2 could be a promising candidate for the development of novel vaccines and diagnostic tools. Hence, a detailed exploration of epitopes in the VP2 protein is necessary. In this study, four novel B-cell IDEs were identified using two different antisera with two different methods. IDE2 was identified as a new neutralizing linear epitope. Our findings will help in the rational design of epitope vaccines and further understanding of the antigenic structure of VP2.


Asunto(s)
Proteínas de la Cápside , Epítopos de Linfocito B , Animales , Cobayas , Proteínas de la Cápside/genética , Epítopos de Linfocito B/genética , Anticuerpos Antivirales , Sueros Inmunes
7.
Appl Microbiol Biotechnol ; 107(15): 4903-4915, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37314455

RESUMEN

Canine parvovirus (CPV) is an acute and highly infectious virus causing disease in puppies and, thus, affecting the global dog industry. The current CPV detection methods are limited by their sensitivity and specificity. Hence, the current study sought to develop a rapid, sensitive, simple, and accurate immunochromatographic (ICS) test to detect and control the spread and prevalence of CPV infection. More specifically, 6A8, a monoclonal antibody (mAb) with high specificity and sensitivity, was obtained by preliminary screening. The 6A8 antibody was labelled with colloidal gold particles. Subsequently, 6A8 and goat anti-mouse antibodies were coated onto a nitrocellulose membrane (NC) as the test and control lines, respectively. Furthermore, 6A8 and rabbit IgG antibodies were labelled with fluorescent microspheres and evenly sprayed onto a glass fibre membrane. Both strips could be prepared in 15 min with no noticeable cross-reactivity with other common canine intestinal pathogens. The strips were simultaneously used to detect CPV in 60 clinical samples using real-time quantitative PCR, hemagglutination, and hemagglutination inhibition assays. The colloidal gold (fluorescent) ICS test strip was stable for 6 (7) and 4 (5) months at 4 °C and room temperature (18-25 °C). Both test strips were easy to prepare and rapidly detected CPV with high sensitivity and specificity. Moreover, the results were easily interpretable. This study establishes a simple method for two CPV diseases, colloidal gold and fluorescent immunochromatographic (ICS) test strips. KEY POINTS: • CPV test strips do not exhibit cross-reactivity with other canine intestinal pathogens. • The strips are stable for months at 4 °C and at room temperature (18-25 °C). • These strips are a promising approach for the timely diagnosis and treatment of CPV.


Asunto(s)
Parvovirus Canino , Conejos , Animales , Perros , Oro Coloide/química , Sensibilidad y Especificidad , Pruebas Inmunológicas , Colorantes , Cromatografía de Afinidad/métodos
8.
Appl Microbiol Biotechnol ; 107(11): 3779-3788, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37099055

RESUMEN

The p30 protein is abundantly expressed in the early stage of African swine fever virus (ASFV) infection. Thus, it is an ideal antigen candidate for serodiagnosis with the use of an immunoassay. In this study, a chemiluminescent magnetic microparticle immunoassay (CMIA) was developed for the detection of antibodies (Abs) against ASFV p30 protein in porcine serum. Purified p30 protein was coupled to magnetic beads, and the experimental conditions including concentration, temperature, incubation time, dilution ratio, buffers, and other relevant variables were evaluated and optimized. To evaluate the performance of the assay, a total of 178 pig serum samples (117 negative and 61 positive samples) were tested. According to receiver operator characteristic curve analysis, the cut-off value of the CMIA was 104,315 (area under the curve, 0.998; Youden's index, 0.974; 95% confidence interval: 99.45 to 100%). Sensitivity results showed that the dilution ratio of p30 Abs in ASFV-positive sera detected by the CMIA is much higher when compared to commercial blocking ELISA kit. Specificity testing showed that no cross-reactivity was observed with sera positive for other porcine disease viruses. The intraassay coefficient of variation (CV) was < 5%, and the interassay CV was < 10%. The p30-magnetic beads could be stored at 4 °C for more than 15 months without loss of activity. The kappa coefficient between CMIA and INGENASA blocking ELISA kit was 0.946, showing strong agreement. In conclusion, our method showed superiority with high sensitivity, specificity, reproducibility, and stability and potentialized its application in the development of a diagnostic kit for the detection of ASF in clinical samples. KEY POINTS: • ASFV tag-free p30 was successfully purified. • High sensitivity, specificity, relatively simple, and time-saving to detect antibody against ASFV were developed. • The development of CMIA will help the clinical diagnosis of ASFV and will be useful for large-scale serological test.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Porcinos , Animales , Reproducibilidad de los Resultados , Fiebre Porcina Africana/diagnóstico , Inmunoensayo/métodos , Anticuerpos Antivirales , Fenómenos Magnéticos
9.
Appl Microbiol Biotechnol ; 106(3): 1199-1210, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35089400

RESUMEN

African swine fever virus (ASFV) causes acute, febrile, and highly contagious diseases in swine. Early diagnosis is critically important for African swine fever (ASF) prevention and control in the absence of an effective vaccine. P30 is one of the most immunogenic proteins that are produced during the early stage of an ASFV infection. This makes P30 a good serological target for ASF detection and surveillance. In this study, two P30-reactive monoclonal antibodies (mAbs), 2H2 and 5E8, were generated from mice immunized with recombinant P30 protein (rP30). Epitope mapping was performed with overlapping polypeptides, alanine mutants, and synthetic peptides. The mapping results revealed that 2H2 recognized a region located in the N-terminal, 16-48 aa. In contrast, 5E8 recognized a linear epitope in the C-terminal, 122-128 aa. Further analysis indicated that the epitope recognized by 2H2 was highly conserved in genotypes I and II, while the 5E8 epitope was conserved in most genotypes and the Ser to Pro change at position 128 in genotypes IV, V, and VI did not affect recognition. Overall, the results of this study provide valuable information on the antigenic regions of ASFV P30 and lay the foundation for the serological diagnosis of ASF and vaccine research. KEY POINTS: • Two specific and reactive mAbs were prepared and their epitopes were identified. • 2H2 recognized a novel epitope highly conserved in genotypes I and II. • 5E8 recognized a seven-amino acid linear epitope highly conserved in most genotypes.


Asunto(s)
Virus de la Fiebre Porcina Africana , Anticuerpos Monoclonales/inmunología , Mapeo Epitopo , Proteínas Virales/inmunología , Fiebre Porcina Africana , Virus de la Fiebre Porcina Africana/inmunología , Animales , Anticuerpos Antivirales , Epítopos/genética , Ratones , Porcinos
10.
Transbound Emerg Dis ; 69(4): e216-e223, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34370390

RESUMEN

African swine fever (ASF) is one of the most severe infectious diseases of pigs. In this study, a loop-mediated isothermal amplification (LAMP) assay coupled with the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas12a system was established in one tube for the detection of the African swine fever virus (ASFV) p72 gene. The single-stranded DNA-fluorophore quencher reporter and CRISPR-derived RNA were screened and selected for the CRISPR detection system. In combination with LAMP amplification assay, the detection limit for the LAMP-CRISPR assay can reach 7 copies/µl of p72 gene per reaction. Furthermore, this method displays no cross-reactivity with other porcine DNA or RNA viruses. The performance of the LAMP-CRISPR assay was compared with real-time qPCR tests for clinical samples; a good consistency between the LAMP-CRISPR assay and real-time qPCR was observed. The method shed a light on the convenient, portable, low cost, highly sensitive and specific detection of ASFV, demonstrating a great application potential for monitoring on-site ASFV in the field.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Enfermedades de los Porcinos , Fiebre Porcina Africana/diagnóstico , Virus de la Fiebre Porcina Africana/genética , Animales , Sistemas CRISPR-Cas , Técnicas de Diagnóstico Molecular , Técnicas de Amplificación de Ácido Nucleico/métodos , Técnicas de Amplificación de Ácido Nucleico/veterinaria , Sensibilidad y Especificidad , Porcinos , Enfermedades de los Porcinos/genética
11.
Appl Microbiol Biotechnol ; 106(2): 799-810, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34939134

RESUMEN

African swine fever (ASF) is an acute and highly contagious infectious disease caused by the African swine fever virus (ASFV). Currently, there is no vaccine against ASF worldwide, and no effective treatment measures are available. For this reason, developing a simple, rapid, specific, and sensitive serological detection method for ASFV antibodies is crucial for the prevention and control of ASF. In this study, a 1:1 mixture of gold-labeled p30 and p72 probes was used as the gold-labeled antigen. The p30 and p72 proteins and their monoclonal antibodies were coated on a nitrocellulose membrane (NC) as a test (T) line and control (C) line, respectively. A colloidal-gold dual immunochromatography strip (ICS) for ASFV p30 and p72 protein antibodies was established. The results showed that the colloidal-gold dual ICS could specifically detect ASFV antibodies within 5-10 min. There was no cross-reaction after testing healthy pig serum; porcine reproductive and respiratory syndrome virus (PRRSV), foot-and-mouth disease type A virus (FMDV-A), foot-and-mouth disease type O virus (FMDV-O), porcine circovirus type 2 (PCV-2), and classical swine fever virus (CSFV) positive sera. A positive result was obtained only for the positive control P1. The sensitivity of the test strips was 1:256, which was equivalent to that of commercially ELISA kits. Their coincidence rate with the two commercial ASFV ELISA antibodies detection kits was higher than 98%. The test strips were stably stored at 18-25 °C and 4 °C for 4 and 6 months, respectively. The colloidal-gold dual ICS prepared in this study had high sensitivity and specificity and were characterized by rapid detection, simple operation, and easy interpretation of results. Therefore, they are of great significance to diagnose, prevent, and control African swine fever. KEY POINTS: • We establish an antibody detection that is quick and can monitor an ASF infection. • We observe changes in two protein antibodies to dynamically monitor ASF infection. • We use diversified detection on a single test strip to detect both antibodies.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Fiebre Porcina Africana/diagnóstico , Animales , Cromatografía de Afinidad , Ensayo de Inmunoadsorción Enzimática , Oro Coloide , Porcinos
12.
Sheng Wu Gong Cheng Xue Bao ; 37(9): 3211-3220, 2021 Sep 25.
Artículo en Chino | MEDLINE | ID: mdl-34622629

RESUMEN

To develop Senecavirus A (SVA) virus-like particles (VLPs), a recombinant prokaryotic expression plasmid pET28a-SVA-VP031 was constructed to co-express SVA structural proteins VP0, VP3 and VP1, according to the genomic sequence of the field isolate CH-FJ-2017 after the recombinant proteins were expressed in E .coli system, and purified by Ni+ ion chromatographic method. The SVA VLPs self-assemble with a high yield in vitro buffer. A typical VLPs with an average diameter of 25-30 nm which is similar to native virions by using TEM detection. Animals immunized by SVA VLPs shown that the VLPs induced high titers neutralizing antibodies in Guinea pigs. This study indicated that the VLPs produced with co-expressing SVA structural proteins VP0, VP3 and VP1 in prokaryotic system is a promising candidate and laid an important foundation for the development of a novel SVA VLPs vaccine.


Asunto(s)
Picornaviridae , Animales , Anticuerpos Neutralizantes , Escherichia coli/genética , Genómica , Cobayas , Picornaviridae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...