Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(8)2022 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-35457027

RESUMEN

Plant fatty acyl-acyl carrier protein (ACP) thioesterases terminate the process of de novo fatty acid biosynthesis in plastids by hydrolyzing the acyl-ACP intermediates, and determine the chain length and levels of free fatty acids. They are of interest due to their roles in fatty acid synthesis and their potential to modify plant seed oils through biotechnology. Fatty acyl-ACP thioesterases (FAT) are divided into two families, i.e., FATA and FATB, according to their amino acid sequence and substrate specificity. The high oil content in Jatropha curcas L. seed has attracted global attention due to its potential for the production of biodiesel. However, the detailed effects of JcFATA and JcFATB on fatty acid biosynthesis and plant growth and development are still unclear. In this study, we found that JcFATB transcripts were detected in all tissues and organs examined, with especially high accumulation in the roots, leaves, flowers, and some stages of developing seeds, and JcFATA showed a very similar expression pattern. Subcellular localization of the JcFATA-GFP and JcFATB-GFP fusion protein in Arabidopsis leaf protoplasts showed that both JcFATA and JcFATB localized in chloroplasts. Heterologous expression of JcFATA and JcFATB in Arabidopsis thaliana individually generated transgenic plants with longer roots, stems and siliques, larger rosette leaves, and bigger seeds compared with those of the wild type, indicating the overall promotion effects of JcFATA and JcFATB on plant growth and development while JcFATB had a larger impact. Compositional analysis of seed oil revealed that all fatty acids except 22:0 were significantly increased in the mature seeds of JcFATA-transgenic Arabidopsis lines, especially unsaturated fatty acids, such as the predominant fatty acids of seed oil, 18:1, 18:2, and 18:3. In the mature seeds of the JcFATB-transgenic Arabidopsis lines, most fatty acids were increased compared with those in wild type too, especially saturated fatty acids, such as 16:0, 18:0, 20:0, and 22:0. Our results demonstrated the promotion effect of JcFATA and JcFATB on plant growth and development, and their possible utilization to modify the seed oil composition and content in higher plants.


Asunto(s)
Arabidopsis , Jatropha , Proteína Transportadora de Acilo/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Ácidos Grasos/metabolismo , Jatropha/genética , Jatropha/metabolismo , Palmitoil-CoA Hidrolasa/análisis , Palmitoil-CoA Hidrolasa/metabolismo , Desarrollo de la Planta , Aceites de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Semillas/metabolismo , Tioléster Hidrolasas/genética
2.
ACS Appl Mater Interfaces ; 12(24): 27578-27586, 2020 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-32456422

RESUMEN

To address the poor stability of lead halide perovskite nanoparticles (NPs), monodisperse methylammonium lead bromide (MAPbBr3, M-PE) NPs were successfully encapsulated with a thin layer (10 nm) of poly(norepinephrine) (PNE) by in situ polymerization. The PNE layer endowed M-PE NPs with high structural stability against severe environmental conditions. Furthermore, the chemical interaction between M-PE and PNE facilitates the construction of the core@shell composite, as well as contributes to the enhanced light-harvesting capacity and improved photoelectronic conversion efficiency in photocatalytic activity. The encapsulated NP M-PE@PNE with a band gap of 2.04 eV degraded the organic pollutant of malachite green by 81% in less than 2 h under visible light, which was 4.5 times higher than pristine M-PE NPs. This work provides a practical approach to stabilize and boost the MAPbX3 photocatalyst and carries enormous potential in wide engineering applications.

3.
Nat Commun ; 8(1): 488, 2017 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-28887563

RESUMEN

Identification of the active site is important in developing rational design strategies for solid catalysts but is seriously blocked by their structural complexity. Here, we use uniform Cu nanocrystals synthesized by a morphology-preserved reduction of corresponding uniform Cu2O nanocrystals in order to identify the most active Cu facet for low-temperature water gas shift (WGS) reaction. Cu cubes enclosed with {100} facets are very active in catalyzing the WGS reaction up to 548 K while Cu octahedra enclosed with {111} facets are inactive. The Cu-Cu suboxide (CuxO, x ≥ 10) interface of Cu(100) surface is the active site on which all elementary surface reactions within the catalytic cycle proceed smoothly. However, the formate intermediate was found stable at the Cu-CuxO interface of Cu(111) surface with consequent accumulation and poisoning of the surface at low temperatures. Thereafter, Cu cubes-supported ZnO catalysts are successfully developed with extremely high activity in low-temperature WGS reaction.Nanocrystals display a variety of facets with different catalytic activity. Here the authors identify the most active facet of copper nanocrystals relevant to the low-temperature water gas shift reaction and further design zinc oxide-copper nanocubes with exceptionally high catalytic activity.

4.
Angew Chem Int Ed Engl ; 54(50): 15260-5, 2015 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-26555557

RESUMEN

P-type Cu2 O has been long considered as an attractive photocatalyst for photocatalytic water reduction, but few successful examples has been reported. Here, we report the synthesis of TiO2 (core)/Cu2 O (ultrathin film shell) nanorods by a redox reaction between Cu(2+) and in-situ generated Ti(3+) when Cu(2+) -exchanged H-titanate nanotubes are calcined in air. Owing to the strong TiO2 -Cu2 O interfacial interaction, TiO2 (core)/Cu2 O (ultrathin film shell) nanorods are highly active and stable in photocatalytic water reduction. The TiO2 core and Cu2 O ultrathin film shell respectively act as the photosensitizer and cocatalyst, and both the photoexcited electrons in the conduction band and the holes in the valence band of TiO2 respectively transfer to the conduction band and valence band of the Cu2 O ultrathin film shell. Our results unambiguously show that Cu2 O itself can act as the highly active and stable cocatalyst for photocatalytic water reduction.

5.
Phys Chem Chem Phys ; 17(47): 31862-71, 2015 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-26568319

RESUMEN

Reduction behaviors, oxygen vacancies and hydroxyl groups play decisive roles in the surface chemistry and catalysis of oxides. Employing isothermal H2 reduction we simultaneously reduced CeO2 nanocrystals with different morphologies, created oxygen vacancies and produced hydroxyl groups. The morphology of CeO2 nanocrystals was observed to strongly affect the reduction process and the resultant oxygen vacancy structure. The resultant oxygen vacancies are mainly located on the surfaces of CeO2 cubes and rods but in the subsurface/bulk of CeO2 octahedra. The reactivity of isolated bridging hydroxyl groups on CeO2 nanocrystals was found to depend on the local oxygen vacancy concentration, in which they reacted to produce water at low local oxygen vacancy concentrations but to produce both water and hydrogen with increasing local oxygen vacancy concentration. These results reveal a morphology-dependent interplay among the reduction behaviors, oxygen vacancies and hydroxyl reactivity of CeO2 nanocrystals, which deepens the fundamental understanding of the surface chemistry and catalysis of CeO2.

6.
Chemistry ; 21(38): 13181-5, 2015 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-26241390

RESUMEN

Integration of different active sites into metallic catalysts, which may impart new properties and functionalities, is desirable yet challenging. Herein, a novel dealloying strategy is demonstrated to decorate nickel-aluminum layered double hydroxide (NiAl-LDH) onto a Pt-Ni alloy surface. The incorporation of chemical etching of Pt-Ni alloy and in situ precipitation of LDH are studied by joint experimental and theoretical efforts. The initial Ni-rich Pt-Ni octahedra transform by interior erosion into Pt3 Ni nanoframes with enlarged surface areas. Furthermore, owing to the basic active sites of the decorated LDH together with the metallic sites of Pt3 Ni, the resulting Pt-Ni nanoframe/NiAl-LDH composites exhibit excellent catalytic activity and selectivity in the dehydrogenation of benzylamine and hydrogenation of furfural.

7.
Rev Sci Instrum ; 85(6): 064103, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24985827

RESUMEN

A pulse chemisorption/reaction system in combination with Fourier transform infrared spectrometer equipped with a diffuse reflectance infrared Fourier transformed spectroscopy (DRIFTS) reaction cell and online mass spectrometer is described in detail. Such a system provides an approach to effectively suppress the interference of the gas-phase reactants to the vibrational signals of surface adsorbates during the operando DRIFTS measurements and, thus, allows for in situ and real-time monitor of surface species on catalyst surfaces during chemisorption/reaction processes. Employing this system, we successfully acquired DRIFTS spectra that clearly demonstrate surface species formed by propylene chemisorption and reaction on octahedral Cu2O nanocrystals; we also observed simultaneous chemisorption of CO on top, twofold, and threefold bridged sites of Pd nanoparticles supported on SiO2 upon the collision of CO prior to the saturation of strongly bound sites and the transformation of weakly bound CO(a) into strongly bound CO(a) during the dynamic chemisorption-desorption processes.

8.
Angew Chem Int Ed Engl ; 53(19): 4856-61, 2014 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-24692419

RESUMEN

The selective oxidation of propylene with O2 to propylene oxide and acrolein is of great interest and importance. We report the crystal-plane-controlled selectivity of uniform capping-ligand-free Cu2 O octahedra, cubes, and rhombic dodecahedra in catalyzing propylene oxidation with O2 : Cu2 O octahedra exposing {111} crystal planes are most selective for acrolein; Cu2 O cubes exposing {100} crystal planes are most selective for CO2 ; Cu2 O rhombic dodecahedra exposing {110} crystal planes are most selective for propylene oxide. One-coordinated Cu on Cu2 O(111), three-coordinated O on Cu2 O(110), and two-coordinated O on Cu2 O(100) were identified as the catalytically active sites for the production of acrolein, propylene oxide, and CO2 , respectively. These results reveal that crystal-plane engineering of oxide catalysts could be a useful strategy for developing selective catalysts and for gaining fundamental understanding of complex heterogeneous catalytic reactions at the molecular level.

9.
Sci Rep ; 3: 1625, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23567985

RESUMEN

Gas-phase methyl radicals have been long proposed as the key intermediate in catalytic oxidative coupling of methane, but the direct experimental evidence still lacks. Here, employing synchrotron VUV photoionization mass spectroscopy, we have directly observed the formation of gas-phase methyl radicals during oxidative coupling of methane catalyzed by Li/MgO catalysts. The concentration of gas-phase methyl radicals correlates well with the yield of ethylene and ethane products. These results lead to an enhanced fundamental understanding of oxidative coupling of methane that will facilitate the exploration of new catalysts with improved performance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...