Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochim Biophys Acta Mol Basis Dis ; : 167300, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38880160

RESUMEN

BACKGROUND: The pathophysiology of ulcerative colitis (UC) is believed to be heavily influenced by immunology, which presents challenges for both diagnosis and treatment. The main aims of this study are to deepen our understanding of the immunological characteristics associated with the disease and to identify valuable biomarkers for diagnosis and treatment. METHODS: The UC datasets were sourced from the GEO database and were analyzed using unsupervised clustering to identify different subtypes of UC. Twelve machine learning algorithms and Deep learning model DNN were developed to identify potential UC biomarkers, with the LIME and SHAP methods used to explain the models' findings. PPI network is used to verify the identified key biomarkers, and then a network connecting super enhancers, transcription factors and genes is constructed. Single-cell sequencing technology was utilized to investigate the role of Peroxisome Proliferator Activated Receptor Gamma (PPARG) in UC and its correlation with macrophage infiltration. Furthermore, alterations in PPARG expression were validated through Western blot (WB) and immunohistochemistry (IHC) in both in vitro and in vivo experiments. RESULT: By utilizing bioinformatics techniques, we were able to pinpoint PPARG as a key biomarker for UC. The expression of PPARG was significantly reduced in cell models, UC animal models, and colitis models induced by dextran sodium sulfate (DSS). Interestingly, overexpression of PPARG was able to restore intestinal barrier function in H2O2-induced IEC-6 cells. Additionally, immune-related differentially expressed genes (DEGs) allowed for efficient classification of UC samples into neutrophil and mitochondrial metabolic subtypes. A diagnostic model incorporating the three disease-specific genes PPARG, PLA2G2A, and IDO1 demonstrated high accuracy in distinguishing between the UC group and the control group. Furthermore, single-cell analysis revealed that decreased PPARG expression in colon tissue may contribute to the polarization of M1 macrophages through activation of inflammatory pathways. CONCLUSION: In conclusion, PPARG, a gene related to immunity, has been established as a reliable potential biomarker for the diagnosis and treatment of UC. The immune response it controls plays a key role in the progression and development of UC by enabling interaction between characteristic biomarkers and immune infiltrating cells.

2.
Mar Drugs ; 22(6)2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38921571

RESUMEN

TRAF6 is an E3 ubiquitin ligase that plays a crucial role in cell signaling. It is known that MMP is involved in tumor metastasis, and TRAF6 induces MMP-9 expression by binding to BSG. However, inhibiting TRAF6's ubiquitinase activity without disrupting the RING domain is a challenge that requires further research. To address this, we conducted computer-based drug screening to identify potential TRAF6 inhibitors. Using a ligand-receptor complex pharmacophore based on the inhibitor EGCG, known for its anti-tumor properties, we screened 52,765 marine compounds. After the molecular docking of 405 molecules with TRAF6, six compounds were selected for further analysis. By replacing fragments of non-binding compounds and conducting second docking, we identified two promising molecules, CMNPD9212-16 and CMNPD12791-8, with strong binding activity and favorable pharmacological properties. ADME and toxicity predictions confirmed their potential as TRAF6 inhibitors. Molecular dynamics simulations showed that CMNPD12791-8 maintained a stable structure with the target protein, comparable to EGCG. Therefore, CMNPD12791-8 holds promise as a potential inhibitor of TRAF6 for inhibiting tumor growth and metastasis.


Asunto(s)
Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Factor 6 Asociado a Receptor de TNF , Humanos , Factor 6 Asociado a Receptor de TNF/antagonistas & inhibidores , Factor 6 Asociado a Receptor de TNF/metabolismo , Organismos Acuáticos , Animales , Antineoplásicos/farmacología , Antineoplásicos/química , Evaluación Preclínica de Medicamentos/métodos , Catequina/análogos & derivados , Catequina/farmacología , Catequina/química , Farmacóforo , Péptidos y Proteínas de Señalización Intracelular
3.
World J Clin Oncol ; 15(5): 591-593, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38835841

RESUMEN

Colorectal cancer ranks among the most commonly diagnosed cancers globally, and is associated with a high rate of pelvic recurrence after surgery. In efforts to mitigate recurrence, pelvic lymph node dissection (PLND) is commonly advocated as an adjunct to radical surgery. Neoadjuvant chemoradiotherapy (NACRT) is a therapeutic approach employed in managing locally advanced rectal cancer, and has been found to increase the survival rates. Chua et al have proposed a combination of NACRT with selective PLND for addressing lateral pelvic lymph node metastases in rectal cancer patients, with the aim of reducing recurrence and improving survival outcomes. Nevertheless, certain studies have indicated that the addition of PLND to NACRT and total mesorectal excision did not yield a significant reduction in local recurrence rates or improvement in survival. Consequently, meticulous patient selection and perioperative chemotherapy may prove indispensable in ensuring the efficacy of PLND.

4.
World J Clin Oncol ; 15(3): 367-370, 2024 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-38576589

RESUMEN

The COP9 signalosome subunit 6 (COPS6) is abnormally overexpressed in many malignancies, yet its precise role in carcinogenesis is unknown. To gain a better understanding of COPS6's role, the authors conducted a pan-cancer analysis using various bioinformatics techniques such as differential expression patterns, prognostic value, gene mutations, immune infiltration, correlation analysis, and functional enrichment assessment. Results showed that COPS6 was highly correlated with prognosis, immune cell infiltration level, tumor mutation burden, and microsatellite instability in patients with a range of tumor types. This suggests that COPS6 may be a potential target for cancer treatment. Overall, this research provides insight into COPS6's role in cancer development and its potential therapeutic applications.

5.
World J Clin Oncol ; 15(3): 375-377, 2024 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-38576594

RESUMEN

Colorectal cancer (CRC) is a form of cancer that is often resistant to chemotherapy, targeted therapy, radiotherapy, and immunotherapy due to its genomic instability and inflammatory tumor microenvironment. Ferroptosis, a type of non-apoptotic cell death, is characterized by the accumulation of iron and the oxidation of lipids. Studies have revealed that the levels of reactive oxygen species and glutathione in CRC cells are significantly lower than those in healthy colon cells. Erastin has emerged as a promising candidate for CRC treatment by diminishing stemness and chemoresistance. Moreover, the gut, responsible for regulating iron absorption and release, could influence CRC susceptibility through iron metabolism modulation. Investigation into ferroptosis offers new insights into CRC pathogenesis and clinical management, potentially revolutionizing treatment approaches for therapy-resistant cancers.

7.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167176, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38641013

RESUMEN

Ferroptosis is a programmed form of cell death regulated by iron and has been linked to the development of asthma. However, the precise mechanisms driving ferroptosis in asthma remain elusive. To gain deeper insights, we conducted an analysis of nasal epithelial and sputum samples from the GEO database using three machine learning methods. Our investigation identified a pivotal gene, Arachidonate 15-lipoxygenase (ALOX15), associated with ferroptosis in asthma. Through both in vitro and in vivo experiments, we further confirmed the significant role of ALOX15 in ferroptosis in asthma. Our results demonstrate that ferroptosis manifests in an HDM/LPS-induced allergic airway inflammation (AAI) mouse model, mimicking human asthma, and in HDM/LPS-stimulated 16HBE cells. Moreover, we observed an up-regulation of ALOX15 expression in HDM/LPS-induced mice and cells. Notably, silencing ALOX15 markedly decreased HDM/LPS-induced ferroptosis in 16HBE cells. These findings indicate that ferroptosis may be implicated in the onset and progression of asthma, with ALOX15-induced lipid peroxidation raising the susceptibility to ferroptosis in asthmatic epithelial cells.


Asunto(s)
Araquidonato 15-Lipooxigenasa , Asma , Células Epiteliales , Ferroptosis , Peroxidación de Lípido , Araquidonato 15-Lipooxigenasa/metabolismo , Araquidonato 15-Lipooxigenasa/genética , Animales , Asma/patología , Asma/metabolismo , Asma/genética , Humanos , Ratones , Células Epiteliales/metabolismo , Células Epiteliales/patología , Modelos Animales de Enfermedad , Línea Celular , Femenino , Araquidonato 12-Lipooxigenasa
8.
Crit Rev Oncol Hematol ; 197: 104349, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38626848

RESUMEN

Ferroptosis, a novel form of cell death regulation, was identified in 2012. It is characterized by unique features that differentiate it from other types of cell death, including necrosis, apoptosis, autophagy, and pyroptosis. Ferroptosis is defined by an abundance of iron ions and lipid peroxidation, resulting in alterations in subcellular structures, an elevation in reactive oxygen species (ROS), a reduction in glutathione (GSH) levels, and an augmentation in Fe (II) cytokines. Ferroptosis, a regulated process, is controlled by an intricate network of signaling pathways, where multiple stimuli can either enhance or hinder the process. This review primarily examines the defensive mechanisms of ferroptosis and its interaction with the tumor microenvironment. The analysis focuses on the pathways that involve AMPK, p53, NF2, mTOR, System Xc-, Wnt, Hippo, Nrf2, and cGAS-STING. The text discusses the possibilities of employing a combination therapy that targets several pathways for the treatment of cancer. It emphasizes the necessity for additional study in this field.


Asunto(s)
Ferroptosis , Neoplasias , Transducción de Señal , Microambiente Tumoral , Humanos , Neoplasias/metabolismo , Neoplasias/patología , Animales , Especies Reactivas de Oxígeno/metabolismo
9.
Int Immunopharmacol ; 133: 112098, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38626551

RESUMEN

Lung cancer is a serious health issue globally, and current treatments have proven to be inadequate. Therefore, immune checkpoint inhibitors (ICIs) that target the PD-1/PD-L1 pathway have become a viable treatment option in lun cancer. Honokiol, a lignan derived from Magnolia officinalis, has been found to possess anti-inflammatory, antioxidant, and antitumor properties. Our research found that honokiol can effectively regulate PD-L1 through network pharmacology and transcriptome analysis. Cell experiments showed that honokiol can significantly reduce PD-L1 expression in cells with high PD-L1 expression. Molecular docking, cellular thermal shift assay (CETSA) and Bio-Layer Interferometry (BLI)indicated that Honokiol can bind to PD-L1. Co-culture experiments on lung cancer cells and T cells demonstrated that honokiol mediates PD-L1 degradation, stimulates T cell activation, and facilitates T cell killing of tumor cells. Moreover, honokiol activates CD4 + and CD8 + T cell infiltration in vivo, thus suppressing tumor growth in C57BL/6 mice. In conclusion, this study has demonstrated that honokiol can inhibit the growth of lung cancer by targeting tumor cell PD-L1, suppressing PD-L1 expression, blocking the PD-1/PD-L1 pathway, and enhancing anti-tumor immunity.


Asunto(s)
Antígeno B7-H1 , Compuestos de Bifenilo , Regulación Neoplásica de la Expresión Génica , Lignanos , Neoplasias Pulmonares , Ratones Endogámicos C57BL , Animales , Humanos , Ratones , Compuestos Alílicos , Antígeno B7-H1/metabolismo , Compuestos de Bifenilo/farmacología , Compuestos de Bifenilo/uso terapéutico , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/efectos de los fármacos , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Lignanos/farmacología , Lignanos/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/inmunología , Activación de Linfocitos/efectos de los fármacos , Fenoles
10.
World J Clin Oncol ; 15(2): 175-177, 2024 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-38455138

RESUMEN

Zhuo et al looked into the part of transmembrane 9 superfamily member 1 (TM9SF1) in bladder cancer (BC), and evaluated if it can be used as a therapeutic target. They created a permanent BC cell line and tested the effects of TM9SF1 overexpression and suppression on BC cell growth, movement, invasion, and cell cycle advancement. Their results show that TM9SF1 can boost the growth, movement, and invasion of BC cells and their access into the G2/M stage of the cell cycle. This research gives a novel direction and concept for targeted therapy of BC.

11.
Int Immunopharmacol ; 131: 111865, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38489972

RESUMEN

BACKGROUND: The incidence of ulcerative colitis (UC) continues to rise globally, but effective therapeutic targets are still lacking. In recent years, numerous studies have indicated that lipid therapies could offer a novel perspective for UC treatment. Given the absence of prior research utilizing high-throughput data to identify target genes associated with lipid metabolism, we conducted this work. METHODS: The training set for this study was derived from four datasets within the Gene Expression Omnibus (GEO), encompassing a total of 357 UC patients. We employed four machine learning methods (LASSO, SVM, RF, and Boruta) to jointly identify core biomarkers in these patients, whose aberrant expression needed to be validated in independent datasets and in dextrose sulfate sodium salt (DSS)-induced UC mouse models. Regarding metabolomics, we detected abnormal oxidized lipids in the serum of UC mouse using liquid chromatography-tandem mass spectrometry (LC-MS/MS) in conjunction with orthogonal partial least squares-discriminant analysis (OPLS-DA). RESULTS: Phospholipase A2 Group IIA (PLA2G2A) was first identified as a possible biomarker for UC, with AUC values of 0.810 and 1.000 in the two validation sets, while in animal models the gene showed similarly significant up-regulation in damaged intestinal mucosa. Further analysis of this gene showed that it was positively correlated with 17 immune cell types and histological severity. Additionally, we pioneered the development of a lipid metabolism score in UC research, which outperformed all individual genes in terms of disease diagnostic efficacy (AUC values of 0.980 and 1.000 for the two validation sets, respectively). Finally, the metabolomics study also identified 31 significantly abnormal oxidized lipids, including 12-HHT and DHA. CONCLUSIONS: PLA2G2A is a key therapeutic target for UC, and oxidized lipids such as 12-HHT can serve as potential serologic indicators for diagnosis.


Asunto(s)
Colitis Ulcerosa , Humanos , Ratones , Animales , Colitis Ulcerosa/tratamiento farmacológico , Cromatografía Liquida , Metabolismo de los Lípidos , Espectrometría de Masas en Tándem , Metabolómica/métodos , Biomarcadores , Perfilación de la Expresión Génica , Lípidos/uso terapéutico , Modelos Animales de Enfermedad , Sulfato de Dextran
12.
Phytomedicine ; 128: 155384, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38547620

RESUMEN

BACKGROUND: Ferroptosis is a type of cell death caused by excessive iron-induced peroxidation. It has been found to be involved in a variety of diseases, and natural products can be used to target ferroptosis in treatments. Natural products are biologically active compounds extracted or synthesized from nature. It is an important resource for the discovery of skeletons with a high degree of structural diversity and a wide range of bioactivities, which can be developed directly or used as a starting point for the optimization of new drugs. PURPOSE: In this review, we aim to discuss the interactions between natural products and ferroptosis in the treatment of human diseases. METHODS: Literature was searched in Pubmed, Science Direct, and Web of Science databases for the 11-year period from 2012 to 2023 using the search terms "natural products", "ferroptosis", "human disease", "neurodegenerative disease", "cardiovascular disease", and "cancer". RESULTS: In this research, the roles of natural products and ferroptosis were investigated. We suggest that natural products, such as terpenoids, flavonoids, polyphenols, alkaloids, and saponins, can be used in therapeutic applications for human diseases, as well as in ferroptosis. Additionally, the main mechanisms of ferroptosis were summarized and discussed. Furthermore, we propose that natural products can be utilized to enhance the sensitivity of cancer cells to ferroptosis, thus helping to overcome drug resistance and inhibit metastasis. Moreover, natural products have the potential to modulate the expression levels of ferroptosis-related factors. Finally, the future directions of this field were highlighted. CONCLUSION: The potential of natural products which focus on ferroptosis to treat human illnesses, particularly cancer, is very encouraging for human wellbeing.


Asunto(s)
Productos Biológicos , Ferroptosis , Neoplasias , Ferroptosis/efectos de los fármacos , Humanos , Productos Biológicos/farmacología , Neoplasias/tratamiento farmacológico , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Cardiovasculares/tratamiento farmacológico
13.
J Biomol Struct Dyn ; : 1-14, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38444388

RESUMEN

Abnormal expression of PRDX has been found to play a significant role in the growth of colorectal cancer and other types of tumors. Despite the identification of several PRDX1 inhibitory compounds in recent years, none of them have been utilized in clinical treatments. Therefore, we conducted a virtual screening of 210,331 small molecules from the SPECS library using PRDX1 and multiple methods. From this screening, we identified 13 compounds with the highest scores from the molecular docking analysis. To further validate the accuracy of our pharmacophore model, we constructed a structure-based pharmacophore model and analyzed the receiver operating characteristic curve (ROC curve). Through this process, we selected nine compounds using skeleton jumping and virtual screening based on the highest pharmacophore model scores. Subsequently, we examined the ADMET properties of these nine compounds to assess their drug-forming potential, resulting in three compounds with the best drug properties. Finally, we assessed the binding stability of these three candidate molecules to proteins using molecular dynamics and MM-PBSA calculations. After a comprehensive evaluation, we found that compounds 6 and 9 formed stable complexes with PRDX1 proteins and could potentially serve as competitive inhibitors of PRDX1 substrates.Communicated by Ramaswamy H. Sarma.

14.
Chem Biodivers ; 21(4): e202301993, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38342755

RESUMEN

A new alkaloids, aplysingoniopora A (1), and new configuration pregnane type steroid compound, 9,17-α-pregn-1,4,20-en-3-one (2), and two known pregnane type steroid compounds (3 and 4) were isolated from hydranth of Goniopora columna corals. The compounds structures and absolute configurations were determined by extensive spectroscopic analysis, MS data, single-crystal X-ray diffraction analysis and quantum chemical calculation. The anticancer effect of the compounds were explored in human non-small-cell lung cancer (NSCLC) A549 cell lines. As the results, the compound 3 and 4 induces toxicity and has proliferation inhibitory effects on A549 cells (IC50=58.99 µM and 58.77 µM, respectively) in vitro.


Asunto(s)
Alcaloides , Antozoos , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Animales , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Alcaloides/farmacología , Alcaloides/química , Esteroides/farmacología , Esteroides/química , Pregnanos/farmacología , Estructura Molecular
15.
Mar Drugs ; 22(2)2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38393054

RESUMEN

PLK1 is found to be highly expressed in various types of cancers, but the development of inhibitors for it has been slow. Most inhibitors are still in clinical stages, and many lack the necessary selectivity and anti-tumor effects. This study aimed to create new inhibitors for the PLK1-PBD by focusing on the PBD binding domain, which has the potential for greater selectivity. A 3D QSAR model was developed using a dataset of 112 compounds to evaluate 500 molecules. ADMET prediction was then used to select three molecules with strong drug-like characteristics. Scaffold hopping was employed to reconstruct 98 new compounds with improved drug-like properties and increased activity. Molecular docking was used to compare the efficient compound abbapolin, confirming the high-activity status of [(14S)-14-hydroxy-14-(pyridin-2-yl)tetradecyl]ammonium,[(14S)-15-(2-furyl)-14-hydroxypentadecyl]ammonium and [(14S)-14-hydroxy-14-phenyltetradecyl]ammonium. Molecular dynamics simulations and MMPBSA were conducted to evaluate the stability of the compounds in the presence of proteins. An in-depth analysis of [(14S)-15-(2-furyl)-14-hydroxypentadecyl]ammonium and [(14S)-14-hydroxy-14-phenyltetradecyl]ammonium identified them as potential candidates for PLK1 inhibitors.


Asunto(s)
Compuestos de Amonio , Productos Biológicos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Relación Estructura-Actividad Cuantitativa , Farmacóforo , Productos Biológicos/farmacología
16.
J Nat Prod ; 87(4): 1209-1216, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38394380

RESUMEN

Seven new 4-hydroxy-6-phenyl-2H-pyran-2-one (HPPO) derived meroterpenoids, 1-methyl-12a,12b-epoxyarisugacin M (1), 1-methyl-4a,12b-epoxyarisugacin M (2), 2,3-dihydroxy-3,4a-epoxy-12a-dehydroxyisoterreulactone A (3), 2-hydroxy-12a-dehydroxyisoterreulactone A (4), 3'-demethoxyterritrems B' (5), 4a-hydroxyarisugacin P (6), and 1-epi-arisugacin H (7), together with two known analogues (8 and 9), were isolated from the marine-derived fungal strain Penicillium sp. SCSIO 41691. Their structures were elucidated by spectroscopic methods, and the absolute configurations of compounds 1 and 3 were determined by single-crystal X-ray diffraction. Among them, 1 and 2 had a unique methyl migration in the basic meroterpenoid skeleton with a 12a,12b-epoxy or 4a,12b-epoxy group, and 3 was a highly oxygenated HPPO-derived meroterpenoid featuring a rare 6/5/6/6/6/6 hexacyclic system with a 3,4a-epoxy group. Biologically, 5 exhibited inhibitory activity against lipopolysaccharide-induced nitric oxide production in RAW 264.7 cells with an IC50 value of 21 µM, more potent than the positive control indomethacin.


Asunto(s)
Penicillium , Terpenos , Penicillium/química , Terpenos/farmacología , Terpenos/química , Terpenos/aislamiento & purificación , Estructura Molecular , Animales , Ratones , Células RAW 264.7 , Óxido Nítrico/biosíntesis , Cristalografía por Rayos X , Biología Marina , Lipopolisacáridos/farmacología
17.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167101, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38423372

RESUMEN

BACKGROUND: Sepsis is a major cause of mortality in patients, and ARDS is one of the most common outcomes. The pathophysiology of acute respiratory distress syndrome (ARDS) caused by sepsis is significantly impacted by genes related to ferroptosis. METHODS: In this study, Weighted gene co-expression network analysis (WGCNA), protein-protein interaction (PPI) networks, functional enrichment analysis, and machine learning were employed to identify characterized genes and to construct receiver operating characteristic (ROC) curves. Additionally, DNA methylation levels were quantified and single-cell analysis was conducted. To validate the alterations in the expression of Lipocalin-2 (LCN2) and ferroptosis-related proteins in the in vitro model, Western blotting was carried out, and the changes in intracellular ROS and Fe2+ levels were detected. RESULTS: A combination of eight machine learning algorithms, including RFE, LASSO, RandomForest, SVM-RFE, GBDT, Bagging, XGBoost, and Boruta, were used with a machine learning model to highlight the significance of LCN2 as a key gene in sepsis-induced ARDS. Analysis of immune cell infiltration showed a positive correlation between neutrophils and LCN2. In a cell model induced by LPS, it was found that Ferrostatin-1 (Fer-1), a ferroptosis inhibitor, was able to reverse the expression of LCN2. Knocking down LCN2 in BEAS-2B cells reversed the LPS-induced lipid peroxidation, Fe2+ levels, ACSL4, and GPX4 levels, indicating that LCN2, a ferroptosis-related gene (FRG), plays a crucial role in mediating ferroptosis. CONCLUSION: Upon establishing an FRG model for individuals with sepsis-induced ARDS, we determined that LCN2 could be a dependable marker for predicting survival in these patients. This finding provides a basis for more accurate ARDS diagnosis and the exploration of innovative treatment options.


Asunto(s)
Ferroptosis , Síndrome de Dificultad Respiratoria , Sepsis , Humanos , Lipocalina 2/genética , Ferroptosis/genética , Lipopolisacáridos , Sepsis/complicaciones , Sepsis/genética , Biomarcadores , Aprendizaje Automático , Síndrome de Dificultad Respiratoria/genética
18.
Inflamm Res ; 73(3): 459-473, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38286859

RESUMEN

OBJECTIVE: Sepsis and sepsis-associated organ failure are devastating conditions for which there are no effective therapeutic agent. Several studies have demonstrated the significance of ferroptosis in sepsis. The study aimed to identify ferroptosis-related genes (FRGs) in sepsis, providing potential therapeutic targets. METHODS: The weighted gene co-expression network analysis (WGCNA) was utilized to screen sepsis-associated genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were used to explore gene functions. Three machine learning methods were employed to identify sepsis-related hub genes. Survival and multivariate Cox regression analysis allowed further screening for the key gene RRM2 associated with prognosis. The immune infiltration analysis of the screened sepsis key genes was performed. Additionally, a cecum ligation and puncture (CLP)-induced mouse sepsis model was constructed to validate the expression of key gene in the sepsis. RESULTS: Six sepsis-associated differentially expressed FRGs (RRM2, RPL7A, HNRNPA1, PEBP1, MYL8B and TXNIP) were screened by WGCNA and three machine learning methods analysis. Survival analysis and multivariate Cox regression analysis showed that RRM2 was a key gene in sepsis and an independent prognostic factor associated with clinicopathological and molecular features of sepsis. Immune cell infiltration analysis demonstrated that RRM2 had a connection to various immune cells, such as CD4 T cells and neutrophils. Furthermore, animal experiment demonstrated that RRM2 was highly expressed in CLP-induced septic mice, and the use of Fer-1 significantly inhibited RRM2 expression, inhibited serum inflammatory factor TNF-α, IL-6 and IL-1ß expression, ameliorated intestinal injury and improved survival in septic mice. CONCLUSION: RRM2 plays an important role in sepsis and may contribute to sepsis through the ferroptosis pathway. This study provides potential therapeutic targets for sepsis.


Asunto(s)
Ferroptosis , Ribonucleósido Difosfato Reductasa , Sepsis , Animales , Ratones , Linfocitos T CD4-Positivos , Ciego , Modelos Animales de Enfermedad , Ferroptosis/genética , Sepsis/genética , Factor de Necrosis Tumoral alfa , Ribonucleósido Difosfato Reductasa/metabolismo
19.
Int J Biol Macromol ; 261(Pt 1): 129669, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38272424

RESUMEN

Programmed cell death (PCD), also known as regulatory cell death (RCD), is a process that occurs in all organisms and is closely linked to both normal physiological processes and disease states. Various signaling pathways, such as TP53, KRAS, NOTCH, hypoxia, and metabolic reprogramming, have been found to regulate RCD. Polysaccharides, which are essential natural products, have been the subject of extensive research in the fields of food, nutrition, and medicine due to their wide range of pharmacological effects. Studies have shown that polysaccharides have biological activities and the potential to target signal transduction pathways for the treatment of diseases. This paper provides a review of the mechanisms through which polysaccharides exert their therapeutic effects at different levels and explores the relationship between different types of RCD and human diseases. The aim of this review is to provide a theoretical basis for the further clinical use and application of polysaccharide bioactivities.


Asunto(s)
Apoptosis , Productos Biológicos , Humanos , Apoptosis/fisiología , Muerte Celular , Polisacáridos/farmacología , Polisacáridos/uso terapéutico , Transducción de Señal , Productos Biológicos/farmacología
20.
J Sci Food Agric ; 104(6): 3757-3766, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38234098

RESUMEN

BACKGROUND: Our preliminary research revealed that the polysaccharide GP90 from Gracilariopsis lemaneiformis enhanced the antitumor effect of cisplatin, indicating that GP90 may increase the chemotherapeutic sensitivity. However, it is still necessary to fully understand whether GP90 can also improve the intestinal barrier dysfunction and systemic inflammation induced by cisplatin. RESULTS: GP90 has been demonstrated to inhibit the excessive release of nitirc oxide, interleukin (IL)-6, IL-1ß and tumor necrosis factor (TNF)-α induced by lipopolysaccharide in RAW264.7 cells. In vivo, GP90 effectively ameliorated the decrease in the serum CD4+ /CD8+ T-cell ratio induced by cisplatin and significantly reduced the increase in the inflammatory cytokines, CD4+ Foxp3+ , CD4+ granzyme B+ and CD4+ TNF-α induced by cisplatin. Furthermore, when combined with cisplatin, GP90 increases the protein expression levels of mucin-2 and zonula occludens-1 in the mouse small intestine. Additionally, GP90 combined with cisplatin has a modulatory effect on the intestinal microbiota by elevating the Firmicutes-to-Bacteroidetes ratio and the relative abundance of beneficial microorganisms (Lachnospiraceae bacterium), at the same time as reducing the abundance of cisplatin specific Bacteroides acidifaciens and elevating the content of butyric acid and isobutyric acid. CONCLUSION: Collectively, these findings indicate that GP90 potentially mitigates inflammation and protects the intestinal barrier in tumor-bearing organisms undergoing chemotherapy. © 2024 Society of Chemical Industry.


Asunto(s)
Carcinoma , Neoplasias del Colon , Enfermedades Intestinales , Ratones , Animales , Cisplatino/efectos adversos , Inflamación/tratamiento farmacológico , Inflamación/inducido químicamente , Factor de Necrosis Tumoral alfa/genética , Lipopolisacáridos/efectos adversos , Interleucina-6 , Colon , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...