Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
Environ Technol ; : 1-13, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773903

RESUMEN

The increasing concentrations of heavy metals in livestock wastewater pose a serious threat to the environmental safety and human health, limiting its resource utilisation. In the present study, microalgae and nanoscale zero-valent iron were selected to construct a coupled system for copper-containing wastewater treatment. The addition of 50 mg·L-1 nanoscale zero-valent iron (50 nm) was the optimal value for the experiment, which could significantly increase the biomass of microalgae. In addition, nanoscale zero-valent iron stimulated microalgal secretion of extracellular polymeric substances, increasing the contents of binding sites, organic ligands, and functional groups on the microalgal surfaces and ultimately promoting the settling of microalgae and binding of heavy metals. The coupled system could quickly adapt to copper-containing wastewater of 10 mg·L-1, and the copper removal rate reached 94.99%. Adsorption and uptake by organisms, together with the contribution of zero-valent iron nanoparticles, are the major copper removal pathways. Overall, this work offers a novel technical solution for enhanced treatment of copper-containing livestock wastewater, which will help improve the efficiency and quality of wastewater treatment.

3.
Analyst ; 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38639050

RESUMEN

Here, we report a proof-of-concept resistive pulse method for analyzing chiral amino acids utilizing metal-amino acid crystallization differences. This method involves introducing an amino acid sample solution into a micropipette through a pressure-driven flow. The sample then mixes with a metal ion solution inside the pipette, forming metal-amino acid crystals. The crystal size depends on the enantiomeric excess (x) of chiral amino acid samples. Large x values lead to large crystals. The crystal size difference is then reflected in the resistive pulse size as they block the ionic transport in a micropipette to different extents. We used Cd-cystine crystallization as a model system and found approximately five times the mean current pulse size difference for racemic (x = 0) and L-only (x = +1) cystine samples. A similar result was observed for aspartate. Our discovery opens up new opportunities for micro/nanoscopic chiral amino acid analysis, which can potentially be used in single-cell analysis.

4.
J Org Chem ; 89(9): 6389-6394, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38607957

RESUMEN

This report benchmarks a tris(amino)cyclopropenium (TAC) salt as an electron-transfer mediator for anodic oxidation reactions in comparison to two known mediators: a triarylamine and a triarylimidazole derivative. The three mediators have redox potentials, diffusion coefficients, and heterogeneous electron transfer rates similar to those of glassy carbon electrodes in acetonitrile/KPF6. However, they differ significantly in their performance in two electro-organic reactions: anodic fluorination of a dithiane and anodic oxidation of 4-methoxybenzyl alcohol. These differences are rationalized based on variable stability in the presence of reaction components (e.g., NEt3·3HF, lutidine, and Cs2CO3) as well as very different rates of electron transfer with the organic substrate. Overall, this work highlights the advantages and disadvantages of each mediator and provides a foundation for expanding the applications of TACs in electro-organic synthesis moving forward.

5.
Nat Commun ; 15(1): 2061, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38448433

RESUMEN

Plants are capable of altering root growth direction to curtail exposure to a saline environment (termed halotropism). The root cap that surrounds root tip meristematic stem cells plays crucial roles in perceiving and responding to environmental stimuli. However, how the root cap mediates root halotropism remains undetermined. Here, we identified a root cap-localized NAC transcription factor, SOMBRERO (SMB), that is required for root halotropism. Its effect on root halotropism is attributable to the establishment of asymmetric auxin distribution in the lateral root cap (LRC) rather than to the alteration of cellular sodium equilibrium or amyloplast statoliths. Furthermore, SMB is essential for basal expression of the auxin influx carrier gene AUX1 in LRC and for auxin redistribution in a spatiotemporally-regulated manner, thereby leading to directional bending of roots away from higher salinity. Our findings uncover an SMB-AUX1-auxin module linking the role of the root cap to the activation of root halotropism.


Asunto(s)
Arabidopsis , Factores de Transcripción , Factores de Transcripción/genética , Arabidopsis/genética , Regulación de la Expresión Génica , Estrés Salino/genética , Ácidos Indolacéticos
6.
Artículo en Inglés | MEDLINE | ID: mdl-38450312

RESUMEN

This review summarizes the recent advancements in alternating current (AC)-driven electroorganic synthesis since 2021 and discusses the reactivities AC electrolysis provides to achieve new and unique organic transformations.

7.
Arch Gynecol Obstet ; 309(5): 2167-2173, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38503849

RESUMEN

OBJECTIVE: The purpose of this study is to compare the clinical efficacy of oral dydrogesterone and micronized vaginal progesterone (MVP) gel during the first HRT-FET cycle. METHODS: A retrospective cohort study based on a total of 344 women undergoing their first HRT-FET cycles without Gonadotropin-Releasing Hormone agonist (GnRH-a) pretreatment was conducted. All the cycles were allocated to two groups in the reproductive medical center at the University of Hong Kong-Shenzhen Hospital. One group (n = 193) received oral dydrogesterone 30 mg/d before embryo transfer, while the other group (n = 151) received MVP gel 180 mg/d. RESULTS: The demographics and baseline characteristics of two groups were comparable. We found no statistically significant difference in live birth rate (24.35% vs. 31.13%, P = 0.16), clinical pregnancy rate (34.72% vs. 36.42%, P = 0.74), embryo implantation rate (25.09% vs. 28.36%, P = 0.43), positive pregnancy rate (42.49% vs 38.41%, P = 0.45), miscarriage rate (9.33% vs 3.97%, P = 0.05), or ectopic pregnancy rate (0.52% vs. 0.66%, P = 0.86) between the oral dydrogesterone group and MVP gel group. In the multivariate logistic regression analysis for covariates, medication used for luteal support was not associated with live birth rate (OR = 0.73, 95% CI: 0.32-1.57, P = 0.45). And the different luteal support medication did not have a significant positive association with the live birth rate in the cycles with day 2 embryo transferred (OR = 1.39, 95% CI:0.66-2.39, P = 0.39) and blastocyst transferred (OR = 1.31 95% CI:0.64-2.69, P = 0.46). CONCLUSION: 30 mg/d oral dydrogesterone and 180 mg/d MVP gel revealed similar reproductive outcomes in HRT-FET cycles in the study.


Asunto(s)
Didrogesterona , Progesterona , Embarazo , Femenino , Humanos , Progesterona/uso terapéutico , Estudios Retrospectivos , Índice de Embarazo , Transferencia de Embrión , Luteína
8.
J Am Chem Soc ; 146(7): 4489-4499, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38327095

RESUMEN

Two-dimensional covalent organic frameworks (COFs) are an emerging class of photocatalytic materials for solar energy conversion. In this work, we report a pair of structurally isomeric COFs with reversed imine bond directions, which leads to drastic differences in their physical properties, photophysical behaviors, and photocatalytic CO2 reduction performance after incorporating a Re(bpy)(CO)3Cl molecular catalyst through bipyridyl units on the COF backbone (Re-COF). Using the combination of ultrafast spectroscopy and theory, we attributed these differences to the polarized nature of the imine bond that imparts a preferential direction to intramolecular charge transfer (ICT) upon photoexcitation, where the bipyridyl unit acts as an electron acceptor in the forward imine case (f-COF) and as an electron donor in the reverse imine case (r-COF). These interactions ultimately lead the Re-f-COF isomer to function as an efficient CO2 reduction photocatalyst, while the Re-r-COF isomer shows minimal photocatalytic activity. These findings not only reveal the essential role linker chemistry plays in COF photophysical and photocatalytic properties but also offer a unique opportunity to design photosensitizers that can selectively direct charges.

9.
Adv Mater ; 36(13): e2303869, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37632843

RESUMEN

High-performance perovskite solar cells (PSCs) typically require interfacial passivation, yet this is challenging for the buried interface, owing to the dissolution of passivation agents during the deposition of perovskites. Here, this limitation is overcome with in situ buried-interface passivation-achieved via directly adding a cyanoacrylic-acid-based molecular additive, namely BT-T, into the perovskite precursor solution. Classical and ab initio molecular dynamics simulations reveal that BT-T spontaneously may self-assemble at the buried interface during the formation of the perovskite layer on a nickel oxide hole-transporting layer. The preferential buried-interface passivation results in facilitated hole transfer and suppressed charge recombination. In addition, residual BT-T molecules in the perovskite layer enhance its stability and homogeneity. A power-conversion efficiency (PCE) of 23.48% for 1.0 cm2 inverted-structure PSCs is reported. The encapsulated PSC retains 95.4% of its initial PCE following 1960 h maximum-power-point tracking under continuous light illumination at 65 °C (i.e., ISOS-L-2I protocol). The demonstration of operating-stable PSCs under accelerated ageing conditions represents a step closer to the commercialization of this emerging technology.

10.
Phytochem Anal ; 35(2): 336-349, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37787024

RESUMEN

INTRODUCTION: The root of Bupleurum scorzonerifolium Willd. (BS) is officially recognized in the Chinese Pharmacopoeia. In contrast, the aerial part of BS (ABS), accounting for 80% of BS, is typically discarded, causing potential waste of medicinal resources. ABS has shown benefits in the treatment of inflammation-related diseases in China and Spain, and the material basis underlying its anti-inflammatory effects must be systematically elucidated for the rational use of ABS. OBJECTIVE: We aimed to screen and validate the anti-inflammatory quality markers (Q-markers) of ABS and to confirm the ideal time for ABS harvesting. METHODS: The chemical components and anti-inflammatory effects of ABS from 10 extracted parts were analyzed by UPLC-Q-TOF-MS/MS and in a lipopolysaccharide (LPS)-induced cell model. Anti-inflammatory substances were screened by Pearson bivariate analysis and gray correlation analysis, and the anti-inflammatory effects were verified in a zebrafish tail-cutting inflammation model. HPLC was applied to measure the Q-marker contents of ABS in different harvesting periods. RESULTS: Ten ABS extracts effectively alleviated the increase in LPS-induced proinflammatory cytokines in RAW 264.7 cells. Forty components were identified from them, among which 27 were common components. Eight components were correlated with anti-inflammatory effects, which were confirmed to reverse the expression of proinflammatory and anti-inflammatory factors in a zebrafish model. Chlorogenic acid, hypericin, rutin, quercetin, and isorhamnetin can be detected by HPLC, and the maximum contents of these five Q-markers were obtained in the sample harvested in August. CONCLUSION: The anti-inflammatory Q-markers of ABS were elucidated by chromatographic-pharmacodynamic-stoichiometric analysis, which served as a crucial basis for ABS quality control.


Asunto(s)
Bupleurum , Espectrometría de Masas en Tándem , Ratones , Animales , Pez Cebra , Cromatografía Líquida de Alta Presión , Bupleurum/química , Células RAW 264.7 , Lipopolisacáridos/farmacología , Antiinflamatorios/farmacología , Antiinflamatorios/análisis , Inflamación/tratamiento farmacológico , Componentes Aéreos de las Plantas/química
12.
Front Neurol ; 14: 1240526, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37780713

RESUMEN

Eperisone hydrochloride is a central muscle relaxant used to treat osteoporosis. Seizures are rare side effects of eperisone hydrochloride and have been previously reported in the medical literature in overdose situations but not at regular doses. This case report describes a 42-year-old male painter who developed severe bilateral tonic seizures after the initiation of eperisone hydrochloride at regular doses for low back pain. Symptoms gradually eased in the days following the discontinuation of eperisone hydrochloride and antiepileptic treatment, with no recurrence. This rare adverse drug reaction warrants clinical awareness; however, the mechanisms underlying these adverse reactions remain to be clarified.

14.
J Am Chem Soc ; 145(40): 21851-21859, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37747918

RESUMEN

The functional group compatibility of an electrosynthetic method is typically limited by its potential reaction window. Here, we report that alternating current (AC) electrolysis can overcome such potential window-limited functional group compatibility. Using alkene heterodifunctionalization as a model system, we design and demonstrate a series of AC-driven reactions that add two functional groups sequentially and separately under the cathodic and anodic pulses, including chloro- and bromotrilfuoromethylation as well as chlorosulfonylation. We discovered that the oscillating redox environment during AC electrolysis allows the regeneration of the redox-active functional groups after their oxidation or reduction in the preceding step. As a result, even though redox labile functional groups such as pyrrole, quinone, and aryl thioether fall in the reaction potential window, they are tolerated under AC electrolysis conditions, leading to synthetically useful yields. The cyclic voltammetric study has confirmed that the product yield is limited by the extent of starting material regeneration during the redox cycling. Our findings open a new avenue for improving functional group compatibility in electrosynthesis and show the possibility of predicting the product yield under AC electrolysis from voltammogram features.

15.
Nat Plants ; 9(9): 1514-1529, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37604972

RESUMEN

Ammonium toxicity affecting plant metabolism and development is a worldwide problem impeding crop production. Remarkably, rice (Oryza sativa L.) favours ammonium as its major nitrogen source in paddy fields. We set up a forward-genetic screen to decipher the molecular mechanisms conferring rice ammonium tolerance and identified rohan showing root hypersensitivity to ammonium due to a missense mutation in an argininosuccinate lyase (ASL)-encoding gene. ASL localizes to plastids and its expression is induced by ammonium. ASL alleviates ammonium-inhibited root elongation by converting the excessive glutamine to arginine. Consequently, arginine leads to auxin accumulation in the root meristem, thereby stimulating root elongation under high ammonium. Furthermore, we identified natural variation in the ASL allele between japonica and indica subspecies explaining their different root sensitivity towards ammonium. Finally, we show that ASL expression positively correlates with root ammonium tolerance and that nitrogen use efficiency and yield can be improved through a gain-of-function approach.


Asunto(s)
Oryza , Oryza/genética , Alelos , Arginina , Nitrógeno , Plastidios/genética
16.
Chin Med ; 18(1): 98, 2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37568235

RESUMEN

BACKGROUND: Ulcerative colitis (UC) is an inflammatory disease of the colon that is characterized by mucosal ulcers. Given its increasing prevalence worldwide, it is imperative to develop safe and effective drugs for treating UC. Emodin, a natural anthraquinone derivative present in various medicinal herbs, has demonstrated therapeutic effects against UC. However, low bioavailability due to poor water solubility limits its clinical applications. METHODS: Emodin-borate nanoparticles (EmB) were synthesized to improve drug solubility, and they modified with oligomeric mannitol into microgels (EmB-MO) for targeted delivery to intestinal macrophages that express mannose receptors. UC was induced in a mouse model using dextran sulfate sodium (DSS), and different drug formulations were administered to the mice via drinking water. The levels of inflammation-related factors in the colon tissues and fecal matter were measured using enzyme-linked immunosorbent assay. Intestinal permeability was evaluated using fluorescein isothiocyanate dextran. HE staining, in vivo imaging, real-time PCR, and western blotting were performed to assess intestinal barrier dysfunction. RESULTS: Both EmB and EmB-MO markedly alleviated the symptoms of UC, including body weight loss, stool inconsistency, and bloody stools and restored the levels of pro- and anti-inflammatory cytokines. However, the therapeutic effects of EmB-MO on the macroscopic and immunological indices were stronger than those of EmB and similar to those of 5-aminosalicylic acid. Furthermore, EmB-MO selectively accumulated in the inflamed colon epithelium and restored the levels of the gut barrier proteins such as ZO-1 and Occludin. CONCLUSIONS: EmB-MO encapsulation significantly improved water solubility, which translated to greater therapeutic effects on the immune balance and gut barrier function in mice with DSS-induced UC. Our findings provide novel insights into developing emodin-derived drugs for the management of UC.

17.
Materials (Basel) ; 16(13)2023 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-37444889

RESUMEN

Mg77+xNi20-xLa3 (x = 0, 5, 10, 15) alloys were successfully prepared by the vacuum induction melting method. The structural characterizations of the alloys were performed by using X-ray diffraction and scanning electron microscope. The effects of nickel content on the microstructure and hydrogen storage kinetic of the as-cast alloys were investigated. The results showed that the alloys are composed of a primary phase of Mg2Ni, lamella eutectic composites of Mg + Mg2Ni, and some amount of LaMg12 and La2Mg17. Nickel addition significantly improved the hydrogen-absorption kinetic performance of the alloy. At 683 K, Mg77Ni20La3 alloy and Mg82Ni15La3 alloy underwent hydrogen absorption and desorption reactions for 2 h, respectively, and their hydrogen absorption and desorption capacities were 4.16 wt.% and 4.1 wt.%, and 4.92 wt.% and 4.69 wt.%, respectively. Using the Kissinger equation, it was calculated that the activation energy values of Mg77Ni20La3, Mg82Ni15La3, Mg87Ni10La3 and Mg92Ni5La3 alloys were in the range of 68.5~75.2 kJ/mol, much lower than 150~160 kJ/mol of MgH2.

18.
Faraday Discuss ; 247(0): 45-58, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37466111

RESUMEN

Here, we report an electrochemical protocol for hydrogen isotope exchange (HIE) at α-C(sp3)-H amine sites. Tetrahydroisoquinoline and pyrrolidine are selected as two model substrates because of their different proton transfer (PT) and hydrogen atom transfer (HAT) kinetics at the α-C(sp3)-H amine sites, which are utilized to control the HIE reaction outcome at different applied alternating current (AC) frequencies. We found the highest deuterium incorporation for tetrahydroisoquinolines at 0 Hz (i.e., under direct current (DC) electrolysis conditions) and pyrrolidines at 0.5 Hz. Analysis of the product distribution and D isotope incorporation at different frequencies reveals that the HIE of tetrahydroisoquinolines is limited by its slow HAT, whereas the HIE of pyrrolidines is limited by the overoxidation of its α-amino radical intermediates. The AC-frequency-dependent HIE of amines can be potentially used to achieve selective labeling of α-amine sites in one drug molecule, which will significantly impact the pharmaceutical industry.

19.
Acc Chem Res ; 56(9): 1087-1096, 2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-37078584

RESUMEN

ConspectusMetal chalcogenide quantum dots (QDs) are prized for their unique and functional properties, associated with both intrinsic (quantum confinement) and extrinsic (high surface area) effects, as dictated by their size, shape, and surface characteristics. Thus, they have considerable promise for diverse applications, including energy conversion (thermoelectrics and photovoltaics), photocatalysis, and sensing. QD gels are macroscopic porous structures consisting of interconnected QDs and pore networks in which the pores may be filled with solvent (i.e., wet gels) or air (i.e., aerogels). QD gels are unique because they can be prepared as macroscale objects while fully retaining the size-specific quantum-confined properties of the initial QD building blocks. The extensive porosity of the gels also ensures that each QD in the gel network is accessible to the ambient, leading to high performance in applications that require high surface areas, such as (photo)catalysis and sensing.Metal chalcogenide QD gels are conventionally prepared by chemical approaches. We recently expanded the toolbox for QD gel synthesis by developing electrochemical gelation methods. Relative to conventional chemical oxidation approaches, electrochemical assembly of QDs (1) enables the use of two additional levers for tuning the QD assembly process and gel structure: electrode material and potential, and (2) allows direct gel formation on device substrates to simplify device fabrication and improve reproducibility. We have discovered two distinct electrochemical gelation methods, each of which enables the direct writing of gels on an active electrode surface or the formation of free-standing monoliths. Oxidative electrogelation of QDs leads to assemblies bridged by dichalcogenide (covalent) linkers, whereas metal-mediated electrogelation proceeds via electrodissolution of active metal electrodes to produce free ions that link QDs by binding to pendant carboxylate functionalities on surface ligands (non-covalent linkers). We further demonstrated that the electrogel composition produced from the covalent assembly could be modified by controlled ion exchange to form single-ion decorated bimetallic QD gels, a new category of materials. The QD gels exhibit unprecedented performance for NO2 gas sensing and unique photocatalytic reactivities (e.g., the "cyano dance" isomerization and the reductive ring-opening arylation). The chemistry unveiled during the development of electrochemical gelation pathways for QDs and their post-modification has broad implications for guiding the design of new nanoparticle assembly strategies and QD gel-based gas sensors and catalysts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...