Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(9)2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38732034

RESUMEN

Photosystem I (PS I) is a photosynthetic pigment-protein complex that absorbs light and uses the absorbed energy to initiate electron transfer. Electron transfer has been shown to occur concurrently along two (A- and B-) branches of reaction center (RC) cofactors. The electron transfer chain originates from a special pair of chlorophyll a molecules (P700), followed by two chlorophylls and one phylloquinone in each branch (denoted as A-1, A0, A1, respectively), converging in a single iron-sulfur complex Fx. While there is a consensus that the ultimate electron donor-acceptor pair is P700+A0-, the involvement of A-1 in electron transfer, as well as the mechanism of the very first step in the charge separation sequence, has been under debate. To resolve this question, multiple groups have targeted electron transfer cofactors by site-directed mutations. In this work, the peripheral hydrogen bonds to keto groups of A0 chlorophylls have been disrupted by mutagenesis. Four mutants were generated: PsaA-Y692F; PsaB-Y667F; PsaB-Y667A; and a double mutant PsaA-Y692F/PsaB-Y667F. Contrary to expectations, but in agreement with density functional theory modeling, the removal of the hydrogen bond by Tyr → Phe substitution was found to have a negligible effect on redox potentials and optical absorption spectra of respective chlorophylls. In contrast, Tyr → Ala substitution was shown to have a fatal effect on the PS I function. It is thus inferred that PsaA-Y692 and PsaB-Y667 residues have primarily structural significance, and their ability to coordinate respective chlorophylls in electron transfer via hydrogen bond plays a minor role.


Asunto(s)
Clorofila , Enlace de Hidrógeno , Complejo de Proteína del Fotosistema I , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema I/química , Complejo de Proteína del Fotosistema I/genética , Clorofila/metabolismo , Clorofila/química , Transporte de Electrón , Electrones , Modelos Moleculares , Mutación
2.
Int J Mol Sci ; 25(9)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38732056

RESUMEN

The involvement of the second pair of chlorophylls, termed A-1A and A-1B, in light-induced electron transfer in photosystem I (PSI) is currently debated. Asparagines at PsaA600 and PsaB582 are involved in coordinating the A-1B and A-1A pigments, respectively. Here we have mutated these asparagine residues to methionine in two single mutants and a double mutant in PSI from Synechocystis sp. PCC 6803, which we term NA600M, NB582M, and NA600M/NB582M mutants. (P700+-P700) FTIR difference spectra (DS) at 293 K were obtained for the wild-type and the three mutant PSI samples. The wild-type and mutant FTIR DS differ considerably. This difference indicates that the observed changes in the (P700+-P700) FTIR DS cannot be due to only the PA and PB pigments of P700. Comparison of the wild-type and mutant FTIR DS allows the assignment of different features to both A-1 pigments in the FTIR DS for wild-type PSI and assesses how these features shift upon cation formation and upon mutation. While the exact role the A-1 pigments play in the species we call P700 is unclear, we demonstrate that the vibrational modes of the A-1A and A-1B pigments are modified upon P700+ formation. Previously, we showed that the A-1 pigments contribute to P700 in green algae. In this manuscript, we demonstrate that this is also the case in cyanobacterial PSI. The nature of the mutation-induced changes in algal and cyanobacterial PSI is similar and can be considered within the same framework, suggesting a universality in the nature of P700 in different photosynthetic organisms.


Asunto(s)
Mutación , Complejo de Proteína del Fotosistema I , Synechocystis , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema I/genética , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Synechocystis/genética , Synechocystis/metabolismo , Clorofila/metabolismo , Transporte de Electrón/genética , Clorofila A/metabolismo
3.
Artículo en Inglés | MEDLINE | ID: mdl-38415711

RESUMEN

A yeast strain (CGMCC 2.6937T) belonging to the ascomycetous yeast genus Saturnispora was recently isolated from soil collected in Xinghuacun, Shanxi Province, PR China. The strain produces one or two ellipsoid or spherical ascospores in asci formed by the conjugation between a cell and its bud. Phylogenetic analyses of the internal transcribed spacer (ITS) region and the D1/D2 domain of the large subunit rRNA gene suggest that this strain is conspecific with strains NYNU 14639 isolated from rotten wood collected in Funiu Mountain, Henan province and ES13S05 from soil collected in Nantou County, Taiwan. The CGMCC 2.6937T group is most closely related to Saturnispora dispora and Saturnispora zaruensis. However, strain CGMCC 2.6937T differs from S. dispora by 17 (3.2 %, 13 substitutions and four gaps) and 77 (18.8 %, 52 substitutions and 25 gaps) mismatches, and from S. zaruensis by 15 (2.9 %, 12 substitutions and three gaps) and 64 (15.6 %, 44 substitutions and 20 gaps) mismatches, in the D1/D2 domain and ITS region, respectively. The results suggest that the CGMCC 2.6937T group represents an undescribed species in the genus Saturnispora, for which the name Saturnispora sinensis sp. nov. is proposed. The holotype strain is CGMCC 2.6937T.


Asunto(s)
Ascomicetos , Filogenia , Microbiología del Suelo , Madera , Ascomicetos/clasificación , Ascomicetos/genética , Composición de Base , Análisis de Secuencia de ADN , Madera/microbiología , Técnicas de Tipificación Micológica
4.
Food Res Int ; 172: 113139, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37689903

RESUMEN

Light-flavor Baijiu fermentation is a typical spontaneous solid-state fermentation process fueled by a variety of microorganisms. Mechanized processes have been increasingly employed in Baijiu production to replace traditional manual operation processes, however, the microbiological and physicochemical dynamics in mechanized processes remain largely unknown. Here, we investigated the microbial community succession and flavor compound formation during a whole mechanized fermentation process of light-flavor Baijiu using the conventional dilution plating method, PacBio single-molecule real-time (SMRT) sequencing and headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry. The results showed that largely different fungal and bacterial communities were involved in the soaking and fermentation processes. A clear succession from Pantoea agglomerans to Bacillus (B.) smithii and B. coagulans in dominant bacterial species and from Cladosporium exasperatum to Saccharomyces cerevisiae and Lichtheimia ramosa in dominant fungal species occurred in the soaking processes. In the fermentation process, the most dominant bacterial species was shifted from Pantoea agglomerans to Lactobacillus (La.) acetotolerans and the most dominant fungal species were shifted from Lichtheimia ramose and Rhizopus arrhizus to Saccharomyces cerevisiae. The bacterial and fungal species positively associated with acidity and the formation of ethanol and different flavor compounds were specified. The microbial species exhibited strong co-occurrence or co-exclusion relationships were also identified. The results are helpful for the improvement of mechanized fermentation process of light-flavor Baijiu production.


Asunto(s)
Bacillus , Microbiota , Pantoea , Saccharomyces cerevisiae , Fermentación , Etanol
5.
Foods ; 12(15)2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37569205

RESUMEN

Daqu is a traditional starter for Baijiu fermentation and is produced by spontaneous fermentation of ground and moistened barley or wheat. The quality of Daqu is traditionally evaluated based on physicochemical and subjective sensory parameters without microbiological analysis. Here, we compared the physicochemical characteristics of qualified (QD) and inferior (ID) Daqu, their microbial communities based on plate counting and PacBio SMRT sequencing of rRNA gene libraries, and their impacts on Baijiu fermentation. The results showed that the glucoamylase and α-amylase activities of QD were significantly higher than those of ID. The counts of yeasts and relative abundances of functional microbes, especially the amylolytic bacterium Bacillus licheniformis and fungi Saccharomycopsis fibuligera and Lichtheimia ramosa, were significantly higher in QD than in ID. The laboratory-scale Baijiu fermentation tests showed that the relative abundances of the amylolytic microbes were higher in the QD than the ID fermentation set, resulting in more efficient fermentation, as indicated by more weight loss and higher moisture content in the former. Consequently, more glycerol, acetic acid, ethanol, and other volatile compounds were produced in the QD than in the ID fermentation set. The results suggest that Daqu quality is determined by, and can be evaluated based on, its microbial community.

6.
Cell Rep ; 42(3): 112268, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36933214

RESUMEN

The coordination of chloroplast and nuclear genome status is critical for plant cell function. Here, we report that Arabidopsis CHLOROPLAST AND NUCLEUS DUAL-LOCALIZED PROTEIN 1 (CND1) maintains genome stability in the chloroplast and the nucleus. CND1 localizes to both compartments, and complete loss of CND1 results in embryo lethality. Partial loss of CND1 disturbs nuclear cell-cycle progression and photosynthetic activity. CND1 binds to nuclear pre-replication complexes and DNA replication origins and regulates nuclear genome stability. In chloroplasts, CND1 interacts with and facilitates binding of the regulator of chloroplast genome stability WHY1 to chloroplast DNA. The defects in nuclear cell-cycle progression and photosynthesis of cnd1 mutants are respectively rescued by compartment-restricted CND1 localization. Light promotes the association of CND1 with HSP90 and its import into chloroplasts. This study provides a paradigm of the convergence of genome status across organelles to coordinately regulate cell cycle to control plant growth and development.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Genoma del Cloroplasto , Cloroplastos/metabolismo , Plantas/genética , Núcleo Celular/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Inestabilidad Genómica , Regulación de la Expresión Génica de las Plantas
7.
ACS Nano ; 16(12): 20545-20558, 2022 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-36375012

RESUMEN

The extensive spread of multidrug resistance to Gram-negative bacteria has become a huge threat to human health, where peptide-based antibacterial agents have emerged as a powerful star weapon. Here we report a lipopeptide (LP-20) constructed nanomicelle with a different antibacterial mechanism of membrane curvature modulation, which induced dynamic membrane fission resulting in acceleration and enhancement of antibacterial activity to clinically isolated ESKAPE strains, including multidrug-resistant (MDR) pathogens. The minimum inhibitory concentration was reduced to 2-10 µM, and the minimum duration for killing was shortened to less than an hour by LP-20. This is an improvement over antimicrobial peptides and traditional antibiotics, such as ciprofloxacin and tetracycline, significantly enhancing antibacterial activity for MDR, and we observed no acquisition of resistance for one month. This accelerated germicidal mechanism was attributed to multitargeting with lipopolysaccharides, phosphoethanolamine, phosphatidylglycerol, and cardiolipin, and the synergetic interactions induced a high curvature of the bacterial membrane, which facilitated simultaneously efficient damage to both inner and outer membrane. The LP-20 effectively prolonged the lifetime of myositis mice with Escherichia coli MDR and pneumonia mice with Klebsiella pneumoniae through a hepatic metabolism with ignorable toxicity. This study provides critical information for the fabrication of lipopeptide-based nano-antibiotics for the efficient control of intractable MDR caused by Gram-negative pathogens.


Asunto(s)
Antiinfecciosos , Neumonía Bacteriana , Ratones , Animales , Humanos , Lipopéptidos/farmacología , Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple , Antiinfecciosos/farmacología , Neumonía Bacteriana/tratamiento farmacológico , Pruebas de Sensibilidad Microbiana
8.
Nano Lett ; 22(4): 1694-1702, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35129358

RESUMEN

In situ self-assembly in vivo can be used in the enhanced diagnosis and therapy of major diseases such as cancer and bacterial infections on the basis of an assembly/aggregation-induced-retention (AIR) effect. However, the aggregation degree (αagg) is a significant parameter for determining the delivery efficiency to lesions in a complex physiological environment and a real-time quantitative calculation of the aggregation degree in vivo is still a great challenge. Here, we developed a magnetic resonance imaging (MRI) method for sensitive and quantitative calculation of αagg with a detection limit of 10-4 M and a bioactivated in vivo assembly (BIVA) magnetic resonance (MR) probe was optimized for enhanced T1-weighted MR imaging of M2 macrophages in tumors. Our MRI quantitative calculation method had a high fitting degree (R2 = 0.987) with the gold standard fluorescence (FL) method. On the basis of the BIVA mechanism of CD206 active targeting and cathepsin B specific tailoring to induce an in situ nanofiber assembly, our optimized BIVA probe exhibited a high intracellular aggregation degree of over 70% and a high in vivo αagg value of over 55%. Finally, the aggregation-enhanced T1 MR signal and the AIR effect both contributed to enhanced T1-weighted MR imaging of M2 macrophages in triple-negative breast cancer. We believe that our αagg real-time quantitative calculation method of MRI will help to further screen and optimize the in vivo enhanced imaging and treatment of the BIVA drug.


Asunto(s)
Nanofibras , Neoplasias de la Mama Triple Negativas , Medios de Contraste , Humanos , Macrófagos , Imagen por Resonancia Magnética/métodos , Neoplasias de la Mama Triple Negativas/diagnóstico por imagen
9.
Photosynth Res ; 148(3): 161-180, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33991284

RESUMEN

Despite the high level of symmetry between the PsaA and PsaB polypeptides in Photosystem I, some amino acids pairs are strikingly different, such as PsaA-Gly693 and PsaB-Trp673, which are located near a cluster of 11 water molecules between the A1A and A1B quinones and the FX iron-sulfur cluster. In this work, we changed PsaB-Trp673 to PsaB-Phe673 in Synechocystis sp. PCC 6803. The variant contains ~ 85% of wild-type (WT) levels of Photosystem I but is unable to grow photoautotrophically. Both time-resolved and steady-state optical measurements show that in the PsaB-W673F variant less than 50% of the electrons reach the terminal iron-sulfur clusters FA and FB; the majority of the electrons recombine from A1A- and A1B-. However, in those reaction centers which pass electrons forward the transfer is heterogeneous: a minor population shows electron transfer rates from A1A- and A1B- to FX slightly slower than that of the WT, whereas a major population shows forward electron transfer rates to FX slowed to the ~ 10 µs time range. Competition between relatively similar forward and backward rates of electron transfer from the quinones to the FX cluster account for the relatively low yield of long-lived charge separation in the PsaB-W673F variant. A higher water content and its increased mobility observed in MD simulations in the interquinone cavity of the PsaB-W673F variant shifts the pK of PsaB-Asp575 and allows its deprotonation in situ. The heterogeneity found may be rooted in protonation state of PsaB-Asp575, which controls whether electron transfer can proceed beyond the phylloquinone cofactors.


Asunto(s)
Transporte de Electrón , Proteínas Hierro-Azufre/metabolismo , Complejos de Proteína Captadores de Luz/metabolismo , Complejo de Proteína del Fotosistema I/metabolismo , Synechocystis/crecimiento & desarrollo , Synechocystis/metabolismo , Vitamina K 1/metabolismo , Modelos Moleculares
10.
Carbohydr Polym ; 264: 117982, 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-33910711

RESUMEN

The modified of polysaccharides show various bio-activities. In our work, Phellinus igniarius Selenium-enriched mycelias polysaccharides (PSeP) were prepared from Phellinus igniarius, and its antioxidant and anti-inflammatory effects on injured mice were evaluated. The selenium content and physical properties of polysaccharides were characterized by GC, HPGPC, and FT-IR analysis. The results showed that PSeP could reduce reactive oxygen species (ROS) levels, myeloperoxidase (MPO) activity as well as malondialdehyde (MDA) content. Meanwhile, it increased the enzyme activities of glutathione peroxidase (GSH-Px) and catalase (CAT). Finally, it showed obvious wound healing effects in vivo. Moreover, PSeP could clear the ROS without obvious cytotoxicity. PSeP could further improve its ability to clear ROS level to promote skin wound healing in mice three days in advance.


Asunto(s)
Antioxidantes/farmacología , Polisacáridos Fúngicos/farmacología , Phellinus/química , Selenio/química , Cicatrización de Heridas/efectos de los fármacos , Heridas y Lesiones/tratamiento farmacológico , Animales , Antiinflamatorios/farmacología , Antioxidantes/química , Catalasa/metabolismo , Cromatografía de Gases/métodos , Polisacáridos Fúngicos/química , Glutatión Peroxidasa/metabolismo , Masculino , Malondialdehído/metabolismo , Ratones , Peroxidasa/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Piel/lesiones , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Heridas y Lesiones/metabolismo
11.
Photosynth Res ; 145(2): 97-109, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32447611

RESUMEN

In photosystem I (PSI) complexes at room temperature electron transfer from A1- to FX is an order of magnitude faster on the B-branch compared to the A-branch. One factor that might contribute to this branch asymmetry in time constants is TrpB673 (Thermosynechococcus elongatus numbering), which is located between A1B and FX. The corresponding residue on the A-branch, between A1A and FX, is GlyA693. Here, microsecond time-resolved step-scan FTIR difference spectroscopy at 77 K has been used to study isolated PSI complexes from wild type and TrpB673Phe mutant (WB673F mutant) cells from Synechocystis sp. PCC 6803. WB673F mutant cells require glucose for growth and are light sensitive. Photoaccumulated FTIR difference spectra indicate changes in amide I and II protein vibrations upon mutation of TrpB673 to Phe, indicating the protein environment near FX is altered upon mutation. In the WB673F mutant PSI samples, but not in WT PSI samples, the phylloquinone molecule that occupies the A1 binding site is likely doubly protonated following long periods of repetitive flash illumination at room temperature. PSI with (doubly) protonated quinone in the A1 binding site are not functional in electron transfer. However, electron transfer functionality can be restored by incubating the light-treated mutant PSI samples in the presence of added phylloquinone.


Asunto(s)
Transporte de Electrón/efectos de los fármacos , Complejo de Proteína del Fotosistema I/metabolismo , Quinonas/metabolismo , Synechocystis/metabolismo , Sustitución de Aminoácidos , Sitios de Unión , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Complejo de Proteína del Fotosistema I/genética , Espectroscopía Infrarroja por Transformada de Fourier , Synechocystis/genética , Vitamina K 1/metabolismo
12.
Plant Cell ; 26(3): 1213-29, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24632535

RESUMEN

Under high-irradiance conditions, plants must efficiently protect photosystem II (PSII) from damage. In this study, we demonstrate that the chloroplast protein HYPERSENSITIVE TO HIGH LIGHT1 (HHL1) is expressed in response to high light and functions in protecting PSII against photodamage. Arabidopsis thaliana hhl1 mutants show hypersensitivity to high light, drastically decreased PSII photosynthetic activity, higher nonphotochemical quenching activity, a faster xanthophyll cycle, and increased accumulation of reactive oxygen species following high-light exposure. Moreover, HHL1 deficiency accelerated the degradation of PSII core subunits under high light, decreasing the accumulation of PSII core subunits and PSII-light-harvesting complex II supercomplex. HHL1 primarily localizes in the stroma-exposed thylakoid membranes and associates with the PSII core monomer complex through direct interaction with PSII core proteins CP43 and CP47. Interestingly, HHL1 also directly interacts, in vivo and in vitro, with LOW QUANTUM YIELD OF PHOTOSYSTEM II1 (LQY1), which functions in the repair and reassembly of PSII. Furthermore, the hhl1 lqy1 double mutants show increased photosensitivity compared with single mutants. Taken together, these results suggest that HHL1 forms a complex with LQY1 and participates in photodamage repair of PSII under high light.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de la Membrana/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Proteína Disulfuro Isomerasas/metabolismo , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Cloroplastos/metabolismo , Mutación , Unión Proteica , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...