Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biomed Chromatogr ; 38(4): e5821, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38217347

RESUMEN

In this paper, an ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed for quantifying the levels of crassicauline A, fuziline, karacoline, and songorine in rat plasma. After processing the rat plasma, the proteins in the plasma were separated by extracting the analytes with acetonitrile-methanol (9:1, v/v). The chromatographic column used was the UPLC HSS T3 column, and the mobile phase (methanol-water with 0.1% formic acid) under a gradient elution profile was used to separate the four compounds, with elution times for each analyte being less than 5 min. Electrospray ionization in positive-ion mode and operating in multiple reaction monitoring mode was used for quantitative analysis. Crassicauline A, fuziline, karacoline, and songorine were administered to 48 rats (n = 6 per group) orally (5 mg/kg) and intravenously (0.5 mg/kg). The standard curves demonstrated excellent linearity in the range of 1-2500 ng/mL, wherein all r values were greater than 0.99. The UPLC-MS/MS method for the determination of crassicauline A, fuziline, karacoline, and songorine in rat plasma was successfully applied in determining their pharmacokinetics parameters, from which their oral bioavailabilities were calculated to be 18.7%, 4.3%, 6.0%, and 8.4%, respectively.


Asunto(s)
Alcaloides , Medicamentos Herbarios Chinos , Ratas , Animales , Cromatografía Líquida de Alta Presión/métodos , Medicamentos Herbarios Chinos/farmacocinética , Espectrometría de Masas en Tándem/métodos , Cromatografía Liquida , Metanol
2.
Int J Anal Chem ; 2022: 6734408, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35992562

RESUMEN

In this work, a UPLC-MS/MS method was developed for the determination of gypenoside A and gypenoside XLIX in rat plasma. For chromatographic separation, a UPLC BEH C18 column was employed, the mobile phase comprised acetonitrile: water (w/0.1% formic acid), and the elution time was 4 min. Detection of each compound was enabled by electrospray ionization in negative-ion mode, and quantitative analysis was enabled by operating in multiple reaction monitoring (MRM) mode by monitoring the transitions of m/z 897.5⟶403.3 for gypenoside A, m/z 1045.5⟶118.9 for gypenoside XLIX, and m/z 825.4⟶617.5 for the internal standard. The calibration curves for gypenoside A and gypenoside XLIX demonstrated excellent linearity (r > 0.995) over the range of 2-3000 ng/mL. The intraday and interday precisions of gypenoside A and gypenoside XLIX were within 14.9%, the intraday and interday accuracies ranged from 90.1% to 113.9%, the recoveries were all greater than 88.3%, and the matrix effect ranged from 87.1% to 94.1%. The developed method was successfully applied in the determination of the pharmacokinetics of gypenoside A and gypenoside XLIX. Gypenoside A and gypenoside XLIX had very short half-lives in rats, with oral t 1/2z of 1.4 ± 0.2 h and 1.8 ± 0.6 h, respectively, and low bioavailabilities (0.90% and 0.14%, respectively).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA