Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Free Radic Biol Med ; 214: 184-192, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38369077

RESUMEN

BACKGROUND: The effects of a solitary neonatal exposure to anesthesia plus surgery (anesthesia/surgery) on cognitive function and the underlying mechanism in developing brains remains largely undetermined. We, therefore, set out to investigate the impact of single exposure to anesthesia/surgery in neonatal mice. METHODS: Six-day-old male and female mice received abdominal surgery under 3% sevoflurane plus 50% oxygen for 2 h. The new object recognition (NOR) and Morris water maze (MWM) were used to evaluate cognitive function in young adult mice. Western blot, ELISA and RT-PCR were used to measure levels of NR2B and IL-6 in medial prefrontal cortex and IL-6 in blood of the mice. We employed NR2B siRNA and IL-6 antibody in the interaction studies. RESULTS: The anesthesia/surgery decreased the ratio of novel time to novel plus familiar time in NOR and the number of platform crossings, but not escape latency, in MWM compared to sham condition. The mice in anesthesia/surgery group had increased NR2B expression in medial prefrontal cortex, and IL-6 amounts in blood and medial prefrontal cortex. Local injection of NR2B siRNA in medial prefrontal cortex alleviated the anesthesia/surgery-induced cognitive impairment. IL-6 antibody mitigated the anesthesia/surgery-induced upregulation of NR2B and cognitive impairment in young adult mice. CONCLUSIONS: These results suggest that a single neonatal exposure to anesthesia/surgery causes impairment of memory, but not learning, in young adult mice through IL-6-regulated increases in NR2B concentrations in medial prefrontal cortex, highlighting the need for further research on the underlying mechanisms of anesthesia/surgery's impact on cognitive function in developing brains.


Asunto(s)
Anestesia , Anestésicos por Inhalación , Disfunción Cognitiva , Animales , Ratones , Masculino , Femenino , Animales Recién Nacidos , Anestésicos por Inhalación/toxicidad , Interleucina-6/genética , Anestesia/efectos adversos , ARN Interferente Pequeño
2.
Artículo en Inglés | MEDLINE | ID: mdl-38083499

RESUMEN

The slow oscillation (SO) observed during deep sleep is known to facilitate memory consolidation. However, the impact of age-related changes in sleep electroencephalography (EEG) oscillations and memory remains unknown. In this study, we aimed to investigate the contribution of age-related changes in sleep SO and its role in memory decline by combining EEG recordings and computational modeling. Based on the detected SO events, we found that older adults exhibit lower SO density, lower SO frequency, and longer Up and Down state durations during N3 sleep compared to young and middle-aged groups. Using a biophysically detailed thalamocortical network model, we simulated the "aged" brain as a partial loss of synaptic connections between neurons in the cortex. Our simulations showed that the changes in sleep SO properties in the "aged" brain, similar to those observed in older adults, resulting in impaired memory consolidation. Overall, this study provides mechanistic insights into how age-related changes modulate sleep SOs and memory decline.Clinical Relevance- This study contributes towards finding feasible biomarkers and target mechanism for designing therapy in older adults with memory deficits, such as Alzheimer's disease patients.


Asunto(s)
Electroencefalografía , Sueño , Persona de Mediana Edad , Humanos , Anciano , Sueño/fisiología , Encéfalo/fisiología , Simulación por Computador , Trastornos de la Memoria
3.
EMBO J ; 42(16): e112414, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37382239

RESUMEN

The E3 ligase MDM2 promotes tumor growth and progression by inducing ubiquitin-mediated degradation of P53 and other tumor-suppressing proteins. Here, we identified an MDM2-interacting lncRNA NRON, which promotes tumor formation by suppressing both P53-dependent and independent pathways. NRON binds to MDM2 and MDMX (MDM4) via two different stem-loops, respectively, and induces their heterogenous dimerization, thereby enhancing the E3 ligase activity of MDM2 toward its tumor-suppressing substrates, including P53, RB1, and NFAT1. NRON knockdown dramatically inhibits tumor cell growth in vitro and in vivo. More importantly, NRON overexpression promotes oncogenic transformation by inducing anchorage-independent growth in vitro and facilitating tumor formation in immunocompromised mice. Clinically, NRON expression is significantly associated with poor clinical outcome in breast cancer patients. Together, our data uncover a pivotal role of lncRNA that induces malignant transformation of epithelial cells by inhibiting multiple tumor suppressor proteins.


Asunto(s)
Proteínas Proto-Oncogénicas c-mdm2 , ARN Largo no Codificante , Animales , Ratones , Carcinogénesis/genética , Línea Celular Tumoral , Transformación Celular Neoplásica/genética , Proteínas Proto-Oncogénicas c-mdm2/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
4.
J Cell Mol Med ; 27(16): 2448-2456, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37386795

RESUMEN

We investigated the potential involvement of pyroptosis, a proinflammatory form of regulated cell death, in rheumatoid arthritis (RA). Synovial fluid, synovial tissues and/or serum were compared among 32 patients with RA, 46 patients with osteoarthritis (OA) and 30 healthy controls. Samples were assayed for interleukin (IL)-1ß, IL-18 and lactate hydrogenase (LDH). Synovial expression of NLRP3, caspase-1 and cleaved gasdermin D (GSDMD) was assayed using immunohistochemistry and multiplex immunohistochemistry. Patients with RA showed significantly higher levels of IL-1ß and IL-18 in synovial fluid than patients with OA, and significantly higher levels of both cytokines in serum than healthy controls. RA was associated with higher levels of LDH in synovial fluid than OA. Among patients with RA, levels of IL-1ß, IL-18 and LDH were significantly higher in synovial fluid than in serum, and the levels in synovial fluid positively correlated with disease activity and inflammation. Synovial cells, particularly macrophages, showed upregulation of NLRP3, caspase-1 and cleaved GSDMD in RA compared to OA. Our results implicate pyroptosis in the pathogenesis of RA, perhaps as a driver of local inflammation in joints.


Asunto(s)
Artritis Reumatoide , Osteoartritis , Humanos , Interleucina-18/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Gasderminas , Caspasa 1/metabolismo , Piroptosis , Artritis Reumatoide/metabolismo , Osteoartritis/metabolismo , Inflamación
5.
Cancers (Basel) ; 15(12)2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37370831

RESUMEN

Although immune checkpoint inhibitors improved the clinical outcomes of advanced triple negative breast cancer (TBNC) patients, the response rate remains relatively low. Nigericin is an antibiotic derived from Streptomyces hydrophobicus. We found that nigericin caused cell death in TNBC cell lines MDA-MB-231 and 4T1 by inducing concurrent pyroptosis and apoptosis. As nigericin facilitated cellular potassium efflux, we discovered that it caused mitochondrial dysfunction, leading to mitochondrial ROS production, as well as activation of Caspase-1/GSDMD-mediated pyroptosis and Caspase-3-mediated apoptosis in TNBC cells. Notably, nigericin-induced pyroptosis could amplify the anti-tumor immune response by enhancing the infiltration and anti-tumor effect of CD4+ and CD8+ T cells. Moreover, nigericin showed a synergistic therapeutic effect when combined with anti-PD-1 antibody in TNBC treatment. Our study reveals that nigericin may be a promising anti-tumor agent, especially in combination with immune checkpoint inhibitors for advanced TNBC treatment.

6.
Plant Sci ; 328: 111580, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36587585

RESUMEN

The loss of characteristic nutrient glucoraphanin during the shelf life seriously affects the nutritional quality of broccoli. Here, we monitored the changes in the levels of sulfur donors (cysteine and glutathione) required for glucoraphanin biosynthesis. Similar to glucoraphanin, cysteine content decreased sharply. Continuous down-regulation of BoCysK1 and BoCysK2 genes encoding cysteine synthase might account for cysteine loss. Contrarily, glutathione content accumulated steadily, which might owe to the up-regulation of biosynthetic gene (BoEC1). Additionally, the change of malondialdehyde content was positively correlated with glutathione, implying that oxidative stress might stimulate glutathione accumulation. Nevertheless, the expression of BoGSTF11 gene encoding glutathione S-transferases was down-regulated, which blocked the supply of glutathione. The increase in the content of raphanusamic acid (degradation product) indicated that insufficient supply of sulfur donors not only could constrain the biosynthesis of glucoraphanin but also triggered its degradation.


Asunto(s)
Brassica , Brassica/genética , Brassica/metabolismo , Cisteína/metabolismo , Glucosinolatos/metabolismo , Azufre/metabolismo , Glutatión/metabolismo
7.
Nat Commun ; 13(1): 7160, 2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36418319

RESUMEN

Aromatase inhibition is an efficient endocrine therapy to block ectopic estrogen production for postmenopausal estrogen receptor (ER)-positive breast cancer patients, but many develop resistance. Here, we show that aromatase inhibitor (AI)-resistant breast tumors display features of enhanced aerobic glycolysis with upregulation of long noncoding RNA (lncRNA) DIO3OS, which correlates with poor prognosis of breast cancer patients on AI therapies. Long-term estrogen deprivation induces DIO3OS expression in ER-positive breast tumor cells, which further enhances aerobic glycolysis and promotes estrogen-independent cell proliferation in vitro and in vivo. Mechanistically, DIO3OS interacts with polypyrimidine tract binding protein 1 (PTBP1) and stabilizes the mRNA of lactate dehydrogenase A (LDHA) by protecting the integrity of its 3'UTR, and subsequently upregulates LDHA expression and activates glycolytic metabolism in AI-resistant breast cancer cells. Our findings highlight the role of lncRNA in regulating the key enzyme of glycolytic metabolism in response to endocrine therapies and the potential of targeting DIO3OS to reverse AI resistance in ER-positive breast cancer.


Asunto(s)
Neoplasias de la Mama , ARN Largo no Codificante , Humanos , Femenino , Inhibidores de la Aromatasa/farmacología , Inhibidores de la Aromatasa/uso terapéutico , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Resistencia a Antineoplásicos/genética , Glucólisis/genética , Estrógenos/farmacología , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Proteína de Unión al Tracto de Polipirimidina/metabolismo
8.
Plant J ; 111(3): 800-818, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35653257

RESUMEN

Bell pepper (Capsicum annuum L.) is a tradable and desirable crop; however, its perishable nature requires low-temperature handling. Paradoxically, cold causes chilling injury (CI) and post-harvest waste. Current knowledge about CI in pepper is limited. The mechanism of CI is multi-faceted; therefore, we focused on fatty acid (FA) desaturation. We identified an upstream nuclear transcription factor (TF), CaMYB340, belonging to the R2R3 MYB subfamily, that negatively regulates FA desaturation and CaCBF3 expression and whose gene and protein expression is induced by low temperature (4°C). Specifically, McrBC treatment and bisulfite sequencing PCR indicate that exposure to cold triggers DNA methylation on one of the CHH sites in the CaMYB340 promoter. This epigenetic event at least partly contributes to the upregulation of CaMYB340 transcript levels. Increased expression of CaMYB340 results in the formation of protein complexes with CabHLH93 and CaMYB1R1, which in turn downregulate the expression of downstream genes. For peppers held at low temperature, transient overexpression of CaMYB340 reduced unsaturated FA content and membrane fluidity, resulting in cold-induced poor peel texture. Transient CaMYB340 silencing increased FA desaturation and lowered electrolyte leakage, enhancing cold tolerance in CaMYB340 knockdown fruits. Overall, these results underscore the intricacy of transcriptional networks in plants and highlight the role of CaMYB340 in CI occurrence in pepper fruits.


Asunto(s)
Capsicum , Capsicum/metabolismo , Frío , Ácidos Grasos Insaturados/metabolismo , Frutas/genética , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
9.
Cancer Sci ; 113(9): 3055-3070, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35657686

RESUMEN

5-Fluorouracil (5-FU) is widely used in gastric cancer treatment, yet 5-FU resistance remains an important clinical challenge. We established a model based on five long noncoding RNAs (lncRNA) to effectively assess the prognosis of gastric cancer patients; among them, lncRNA OVAAL was markedly upregulated in gastric cancer and associated with poor prognosis and 5-FU resistance. In vitro and in vivo assays confirmed that OVAAL promoted proliferation and 5-FU resistance of gastric cancer cells. Mechanistically, OVAAL bound with pyruvate carboxylase (PC) and stabilized PC from HSC70/CHIP-mediated ubiquitination and degradation. OVAAL knockdown reduced intracellular levels of oxaloacetate and aspartate, and the subsequent pyrimidine synthesis, which could be rescued by PC overexpression. Moreover, OVAAL knockdown increased sensitivity to 5-FU treatment, which could be reversed by PC overexpression or repletion of oxaloacetate, aspartate, or uridine. OVAAL overexpression enhanced pyrimidine synthesis to promote proliferation and 5-FU resistance of gastric cancer cells, which could be abolished by PC knockdown. Thus, OVAAL promoted gastric cancer cell proliferation and induced 5-FU resistance by enhancing pyrimidine biosynthesis to antagonize 5-FU induced thymidylate synthase dysfunction. Targeting OVAAL-mediated nucleotide metabolic reprograming would be a promising strategy to overcome chemoresistance in gastric cancer.


Asunto(s)
ARN Largo no Codificante , Neoplasias Gástricas , Ácido Aspártico/farmacología , Ácido Aspártico/uso terapéutico , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Fluorouracilo/farmacología , Fluorouracilo/uso terapéutico , Humanos , Nucleótidos/farmacología , Nucleótidos/uso terapéutico , Oxaloacetatos/farmacología , Oxaloacetatos/uso terapéutico , Piruvato Carboxilasa/genética , ARN Largo no Codificante/genética , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo
10.
Plant Sci ; 322: 111363, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35750293

RESUMEN

Cold-stored 'Nanguo' pears are susceptible to peel browning during subsequent shelf life. In this study, 'Nanguo' pears were cold-stored for different periods to elucidate the metabolism of phenylpropanoid accompanying browning. Changes in phenolics and flavonoids and the crucial enzyme activity and related gene expression involved in the phenylpropanoid pathway were monitored. It was found that the fruit that underwent long-term storage showed peel browning symptoms prior to softening, and the symptom got worse with increasing shelf life. Meanwhile, the accumulation of reactive oxygen species (ROS) and the decrease of ROS scavenging ability were noted. The content of phenolics and flavonoids and the activity and expression of shikimate dehydrogenase (SKDH), phenylalanine ammonia-lyase (PAL), cinnamate-4-hydroxylase (C4H), and 4-coumarate-CoA ligase (4CL) involved in the phenylpropanoid pathway decreased with prolonged storage. Correlation analysis revealed that browning was positively correlated with ROS accumulation, and the content of phenolics and flavonoids directly affected ROS scavenging ability. In addition, the decrease in phenolics and flavonoids might be owing to the reduced activity of SKDH, PAL, and 4CL and the down-regulated expression of PuPAL and Pu4CL. Collectively, this study indicated that the metabolism of phenylpropanoid is associated with the browning response induced by low-temperature stress.


Asunto(s)
Pyrus , Frío , Flavonoides/metabolismo , Frutas/genética , Fenoles/metabolismo , Fenilanina Amoníaco-Liasa/genética , Fenilanina Amoníaco-Liasa/metabolismo , Pyrus/genética , Especies Reactivas de Oxígeno/metabolismo
11.
Front Genet ; 13: 872253, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35547257

RESUMEN

Background: The aim of this study was to identify a panel of candidate autoantibodies against tumor-associated antigens in the detection of osteosarcoma (OS) so as to provide a theoretical basis for constructing a non-invasive serological diagnosis method in early immunodiagnosis of OS. Methods: The serological proteome analysis (SERPA) approach was used to select candidate anti-TAA autoantibodies. Then, indirect enzyme-linked immunosorbent assay (ELISA) was used to verify the expression levels of eight candidate autoantibodies in the serum of 51 OS cases, 28 osteochondroma (OC), and 51 normal human sera (NHS). The rank-sum test was used to compare the content of eight autoantibodies in the sera of three groups. The diagnostic value of each indicator for OS was analyzed by an ROC curve. Differential autoantibodies between OS and NHS were screened. Then, a binary logistic regression model was used to establish a prediction logistical regression model. Results: Through ELISA, the expression levels of seven autoantibodies (ENO1, GAPDH, HSP27, HSP60, PDLIM1, STMN1, and TPI1) in OS patients were identified higher than those in healthy patients (p < 0.05). By establishing a binary logistic regression predictive model, the optimal panel including three anti-TAAs (ENO1, GAPDH, and TPI1) autoantibodies was screened out. The sensitivity, specificity, Youden index, accuracy, and AUC of diagnosis of OS were 70.59%, 86.27%, 0.5686, 78.43%, and 0.798, respectively. Conclusion: The results proved that through establishing a predictive model, an optimal panel of autoantibodies could help detect OS from OC or NHS at an early stage, which could be used as a promising and powerful tool in clinical practice.

12.
Cell Insight ; 1(1): 100004, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37192988

RESUMEN

Recent findings have revealed that human genome encodes tens of thousands long noncoding RNAs (lncRNAs), which play essential roles in broad spectrum of cellular processes. Emerging evidence has uncovered a new archetype of lncRNAs which functions as key components of cell signaling pathways. In this review, we describe how lncRNAs interact with proteins to regulate cancer intracellular signaling and intercellular signaling in the tumor microenvironment (TME), which enable cancer cells to acquire malignant hallmarks. Moreover, besides lncRNAs, non-coding nucleic acids, such as neutrophil extracellular trap-DNA (NET-DNA), endogenous DNA and RNA, can act as signal molecules to connect cells from distant organs and trigger systemic responses in the macroenvironment of tumor-bearing hosts. Overall, the widely observed dysregulation of non-coding nucleic acids in cancer alters signaling networks in the tumor ecosystem, providing a rich resource for the identification of cancer biomarkers and therapeutic targets.

13.
Front Aging Neurosci ; 14: 1037904, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36688164

RESUMEN

Background: Postoperative cognitive dysfunction (POCD) is a common complication in elderly patients following surgery. The preventive and/or treatment strategies for the incidence remain limited. Objective: This study aimed to investigate the preventive effect of perioperative probiotic treatment on POCD in elderly patients undergoing hip or knee arthroplasty. Methods: After obtaining ethical approval and written informed consent, 106 patients (age ≥60 years) were recruited, who scheduled elective hip or knee arthroplasty, from 16 March 2021 to 25 February 2022 for this randomized, double-blind, and placebo-controlled trial. They were randomly assigned with a 1:1 ratio to receive either probiotics or placebo treatment (four capsules, twice/day) from hospital admission until discharge. Cognitive function was assessed with a battery of 11 neuropsychological tests on the admission day and the seventh day after surgery, respectively. Results: A total of 96 of 106 patients completed the study, and their data were finally analyzed. POCD occurred in 12 (26.7%) of 45 patients in the probiotic group and 29 (56.9%) of 51 patients in the placebo group (relative risk [RR], 0.47 [95% confidence interval [CI], 0.27 to 0.81]; P = 0.003). Among them, mild POCD occurred in 11 (24.4%) in the probiotic group and 24 (47.1%) in the placebo group (RR, 0.52 [95% CI, 0.29 to 0.94]; P = 0.022). No significant difference in severe POCD incidence was found between the two groups (P = 0.209). Compared with the placebo group, the verbal memory domain cognitive function was mainly improved in the probiotic group. Conclusion: Probiotics may be used perioperatively to prevent POCD development and improve verbal memory performance in elderly patients receiving hip or knee arthroplasty. Clinical trial registration: www.chictr.org.cn, identifier: ChiCTR2100045620.

14.
Food Chem ; 352: 129458, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-33714166

RESUMEN

We investigated the effect of exogenous glutathione (GSH) on chilling injury (CI) in postharvest bell pepper fruits stored at low temperature and explored the mechanism of this treatment from the perspective of the ascorbate-glutathione (AsA-GSH) cycle. Compared with the control, fruits treated with exogenous GSH before refrigeration displayed only slight CI symptoms and mitigated CI-induced cell damage after 10 d. Moreover, the treated peppers had lower lipid peroxidation product, H2O2, and O2- content than those did the control. Glutathione treatment enhanced the ascorbate-glutathione cycle by upregulating CaAPX1, CaGR2, CaMDHAR1, and CaDHAR1 and the antioxidant enzymes APX, GR, and MDHAR associated with the ascorbate-glutathione cycle. Glutathione treatment also increased ascorbate and glutathione concentrations. Taken together, our results showed that exogenous GSH treatment could alleviate CI in pepper fruits during cold storage by triggering the AsA-GSH cycle and improving antioxidant capacity.


Asunto(s)
Ácido Ascórbico/metabolismo , Capsicum/efectos de los fármacos , Capsicum/metabolismo , Frío , Glutatión/farmacología , Frutas/efectos de los fármacos , Frutas/metabolismo , Glutatión/metabolismo , Peróxido de Hidrógeno/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Plantones/efectos de los fármacos , Plantones/metabolismo
15.
Semin Cancer Biol ; 75: 116-126, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33421618

RESUMEN

Non-coding RNAs (ncRNAs) are functional RNAs with limited or no protein-coding ability. These interact with their target molecules and participate in the precise regulation of disease development. Metabolic reprogramming is a hallmark in cancer, and is considered essential in meeting increased macromolecular biosynthesis and energy generation of tumors. Recent studies have revealed the involvement of ncRNAs in several metabolic regulations of cancer through direct modulation of metabolic enzyme activities or participation of metabolism-related signaling pathways. Elucidation of how ncRNAs regulate metabolic reprogramming of cancers has opened up a novel intention to understand the mechanism of metabolic rewiring and also the opportunities of utilizing ncRNA-based therapeutics for targeting the metabolism in cancer treatment.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Regulación Neoplásica de la Expresión Génica , Redes y Vías Metabólicas , Neoplasias/patología , ARN Largo no Codificante/genética , Animales , Biomarcadores de Tumor/genética , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Transducción de Señal
16.
Food Chem ; 335: 127665, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-32738530

RESUMEN

'Nanguo' pear is particularly renowned for its fragrance. Esters are the main components of its aroma, which are synthesized primarily by the LOX pathway. We identified the main volatile esters and critical gene family members involved in the LOX pathway by monitoring their variation accompanying post-harvest ripening and examining their roles through principal component analysis (PCA), partial least-square regression (PLSR), and correlation analysis. In pears ripening to the optimum taste period (OTP), components and contents of volatile esters reached a peak, of which ethyl butanoate, ethyl hexanoate, and hexyl acetate were most prominent. Linoleic acid and linolenic acid contents rose greatly until OTP and then declined; the activities of LOX, alcohol dehydrogenase (ADH), and alcohol acyltransferase (AAT) increased progressively until the OTP. Among the genes involved in LOX-pathway, the expressions of PuLOX3, PuADH3, and PuAAT contributed most to changes of total ester and main esters in 'Nanguo' pears.


Asunto(s)
Frutas/fisiología , Lipooxigenasa/metabolismo , Odorantes/análisis , Proteínas de Plantas/genética , Pyrus/fisiología , Aciltransferasas , Alcohol Deshidrogenasa/genética , Alcohol Deshidrogenasa/metabolismo , Caproatos/análisis , Caproatos/metabolismo , Ésteres/análisis , Ésteres/metabolismo , Almacenamiento de Alimentos , Frutas/genética , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , Análisis de los Mínimos Cuadrados , Ácido Linoleico/análisis , Ácido Linoleico/genética , Ácido Linoleico/metabolismo , Lipooxigenasa/genética , Proteínas de Plantas/metabolismo , Análisis de Componente Principal , Pyrus/genética , Pyrus/metabolismo , Compuestos Orgánicos Volátiles/análisis , Ácido alfa-Linolénico/metabolismo
17.
Food Chem ; 338: 127846, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-32836001

RESUMEN

Cold storage is widely used for delaying ripening and senescence; however, fruit aroma diminishes noticeably after long-term cold storage. The esters synthesized by the lipoxygenase (LOX) pathway are responsible for 'Nanguo' pear aroma. As methyl jasmonate (MeJA) is known to act on various fruit qualities, we investigated whether it acts via the LOX pathway in cold-stored 'Nanguo' pears. MeJA treatment increased the content of volatile esters and unsaturated fatty acids and the activities of alcohol acyltransferase, alcohol dehydrogenase, and LOX. It also up-regulated the expression of key genes (PuAAT, PuADH3, PuADH5, PuADH9, PuLOX1, and PuLOX3) in the LOX pathway and that of transcription factors (PuMYB21-like, PuMYB108-like, PuWRKY61, PuWRKY72, and PuWRKY31), whose genes were differentially expressed in preliminary transcriptome analysis. Therefore, considering its effects on LOX pathway-related genes and transcription factors, MeJA may be useful in preventing cold-storage-induced decline in ester biosynthesis, aroma, and consequently the quality of cold-stored 'Nanguo' pears.


Asunto(s)
Acetatos/farmacología , Ciclopentanos/farmacología , Ésteres/metabolismo , Almacenamiento de Alimentos/métodos , Oxilipinas/farmacología , Pyrus/efectos de los fármacos , Compuestos Orgánicos Volátiles/metabolismo , Ácidos Grasos Insaturados/análisis , Frutas/química , Frutas/efectos de los fármacos , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Lipooxigenasa/genética , Lipooxigenasa/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas/genética , Proteínas/metabolismo , Pyrus/química , Pyrus/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
18.
Hortic Res ; 7: 136, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32922808

RESUMEN

Refrigeration is commonly used to extend the storage life of "Nanguo" pears, but fruit in long-term refrigeration is prone to peel browning, which is related to membrane lipid degradation. To determine the mechanism of membrane lipid degradation, we identified two R2R3-MYB transcription factors (TFs), PuMYB21 and PuMYB54, from "Nanguo" pears, which were notably expressed in response to cold stress and during the peel-browning process. The results from yeast one-hybrid, electrophoretic mobility shift, and transient expression assays indicated that both PuMYB21 and PuMYB54 directly bind to the promoter of PuPLDß1 (a key enzyme catalyzing the hydrolysis of membrane phospholipids) and activate its expression, which probably enhances the degradation of membrane phospholipids and eventually results in peel browning. Moreover, the overexpression of PuMYB21 and PuMYB54 can greatly activate the transcription of endogenous PuPLDß1 in both "Nanguo" pear fruits and calli, and their silencing can inhibit its transcription. Furthermore, yeast two-hybrid, bimolecular fluorescence complementation, and pull-down assays verified that PuMYB21 interacts with PuMYB54 to enhance the expression of PuPLDß1. In summary, we demonstrate that PuMYB21 and PuMYB54 may have roles in membrane lipid metabolism by directly binding to the downstream structural gene PuPLDß1 during the low temperature-induced peel browning of "Nanguo" pears.

19.
Biomed Res Int ; 2020: 4670604, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32802846

RESUMEN

PURPOSE: To investigate whether icariin (ICA), a well-known medicine extracted from the stem and leaf of Epimedium brevicornum Maxim, had analgesic effect on lower back pain (LBP) in rats. METHODS: In a puncture-induced LBP rat model, the severity of LBP was quantified using the paw/foot withdrawal threshold method after intragastric administration of ICA at a dosage of 50 mg/kg/d or 100 mg/kg/d. The pain-related peptides of substance P (SP) and calcitonin gene-related peptide (CGRP) were also measured in intervertebral disc (IVD) tissue using RT-PCR after ICA treatment. In addition, the expression of cytokine-induced neutrophil chemoattractant-1 (CINC-1) in IVD was quantified using RT-PCR and ELISA examination. RESULTS: ICA treatment resulted in a significant amelioration of mechanical allodynia in a dose-response manner, and the analgesic effect could last for two weeks even during the washout period. More importantly, the mechanism of analgesic pharmacological effect in ICA was to suppress the upregulated CINC-1, the homolog of IL-8 in rats, which is a crucial proalgesic factor contributing to LBP, in IVDs. CONCLUSION: ICA is a novel herbal extract to relieve LBP, and it may be a promising alternative pain killer in the future.


Asunto(s)
Quimiocina CXCL1/biosíntesis , Flavonoides/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Hiperalgesia/metabolismo , Dolor de la Región Lumbar/metabolismo , Animales , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/patología , Dolor de la Región Lumbar/tratamiento farmacológico , Dolor de la Región Lumbar/patología , Masculino , Ratas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
20.
Food Chem ; 327: 127057, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32464461

RESUMEN

Chilling injury (CI) restricts the quality and shelf life of bell pepper fruits; reducing these CI-induced detrimental effects is therefore of high economic and agricultural relevance. Here, we investigated the effects of trisodium phosphate (TSP), salicylic acid (SA), and TSP + SA treatments on pepper fruits under cold stress at 4 °C for 25 d. Combined TSP + SA treatment performed an optimal effect. Specifically, TSP + SA treatment enhanced fatty-acid desaturation efficiency, as indicated by the increased expression of key fatty acid desaturase genes, and higher content of unsaturated fatty acids. Meanwhile, TSP + SA treatment inhibited the CI-induced membrane damage, manifested as lower electrolyte leakage and malondialdehyde content. Furthermore, low field-nuclear magnetic resonance and proline content also revealed that TSP + SA treatment mitigated CI through enhancing water retention in pepper fruits. Collectively, our results may shed new light on optimizing the low-temperature storage conditions of post-harvest peppers.


Asunto(s)
Capsicum/química , Ácidos Grasos/química , Fosfatos/química , Ácido Salicílico/química , Agua/química , Capsicum/efectos de los fármacos , Capsicum/metabolismo , Pared Celular/efectos de los fármacos , Frío , Ácidos Grasos/metabolismo , Frutas/química , Frutas/efectos de los fármacos , Frutas/metabolismo , Malondialdehído/química , Malondialdehído/metabolismo , Permeabilidad/efectos de los fármacos , Fosfatos/farmacología , Prolina/química , Ácido Salicílico/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA