Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Small ; 19(42): e2303131, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37344349

RESUMEN

Fabrication of large-area ionic covalent organic framework membranes (iCOMs) remains a grand challenge. Herein, the authors report the liquid water and water vapor-assisted fabrication of large-area superprotonic conductive iCOMs. A mixed monomer solution containing 1,3,5-triformylphloroglucinol (TFP) in 1,4-dioxane and p-diaminobenzenesulfonic acid (DABA) in water is first polymerized to obtain a pristine membrane which subsequently underwent crystallization process in mixed vapors containing water vapor. During the polymerization stage, water played a role of a diluting agent, weakening the Coulombic repulsion between sulfonic acid groups. During the crystallization stage, water vapor played a role of a structure-directing agent to facilitate the formation of highly crystalline, large-area iCOMs. The resulting membranes achieved a proton conductivity value of 0.76 S cm-1 at 90 °C under 100% relative humidity, which is among the highest ever reported. Using liquid water and water vapor as versatile additives open a novel avenue to the fabrication of large-area membranes from covalent organic frameworks and other kinds of crystalline organic framework materials.

2.
ACS Appl Mater Interfaces ; 15(16): 20346-20357, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37043771

RESUMEN

Conductive poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) fibers with high electrical conductivity, flexibility, and robustness are urgently needed for constructing wearable fiber-based electronics. In this study, the highly conductive (4288 S/cm), ultrastrong (a high tensile strength of 956 MPa), and flexible (a low Young's modulus of 3.8 GPa) PEDOT:PSS/1-ethyl-3-methylimidazolium dicyanamide (EMIM:DCA) (P/ED) fiber was prepared by wet-spinning and a subsequent H2SO4-immersion-drawing process. As far as we know, this is the best performance of the PEDOT:PSS fiber reported so far. The structure and conformation of the P/ED fiber were characterized by FESEM, XPS, Raman spectroscopy, UV-vis-NIR spectroscopy, and WAXS. The results show that the high performances of the P/ED fiber are mainly attributed to the massive removal of PSS and high degree of crystallinity (87.9%) and orientation (0.71) of PEDOT caused by the synergistic effect of the ionic liquid, concentrated sulfuric acid, and high stretching. Besides, the P/ED fiber shows a small bending radius of 0.1 mm, and the conductivity of the P/ED fiber is nearly unchanged after 1000 repeated cycles of bending and humidity changes within 50-90%. Based on this, various P/ED fiber-based devices including the circuit connection wire, thermoelectric power generator, and temperature sensor were constructed, demonstrating its wide applications for constructing flexible and wearable electronics.

3.
Foods ; 11(14)2022 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-35885414

RESUMEN

The clarification of sugarcane juice is a crucial stage in the sugar manufacturing process, as it affects evaporator performance, sugar quality and yield. The emergence of environmentally friendly and efficient adsorption technology has resulted in widespread interest in carbon-based materials. However, their low adsorption capacity and reusability make them unsuitable for processing sugarcane juice. Here, we provide a cost-effective and sustainable method to dope hydroxyapatite (HAP) nanoparticles on porous carbon (BBC) derived from sugarcane bagasse (BBC-HAP). The composite shows excellent adsorption capacity for color extract from sugarcane juice of 313.33 mg/g, far more effective than the commercially available carbon-based adsorbents. Isotherm studies show that the adsorption of BBC-HAP composite to the colorants is a monolayer process. The pseudo-first-order (PFO) and pseudo-second-order (PSO) kinetic models demonstrate that the adsorption process is dominated by chemisorption and supplemented by physical adsorption.

4.
Mar Drugs ; 20(3)2022 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-35323490

RESUMEN

Oxidative stress has been implicated in the etiology of Parkinson's disease (PD). Molecules non-covalently binding to the Keap1-Nrf2 complex could be a promising therapeutic approach for PD. Herein, two novel prenylated indole alkaloids asperpenazine (1), and asperpendoline (2) with a scarce skeleton of pyrimido[1,6-a]indole were discovered from the co-cultivated fungi of Aspergillus ochraceus MCCC 3A00521 and Penicillium sp. HUBU 0120. Compound 2 exhibited potential neuroprotective activity on SH-SY5Y cells against oxidative stress. Molecular mechanism research demonstrated that 2 inhibited Keap1 expression, resulting in the translocation of Nrf2 from the cytoplasm to the nucleus, activating the downstream genes expression of HO-1 and NQO1, leading to the reduction in reactive oxygen species (ROS) and the augment of glutathione. Molecular docking and dynamic simulation analyses manifested that 2 interacted with Keap1 (PDB ID: 1X2R) via forming typical hydrogen and hydrophobic bonds with residues and presented less fluctuation of RMSD and RMSF during a natural physiological condition.


Asunto(s)
Alcaloides Indólicos/farmacología , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Fármacos Neuroprotectores/farmacología , Aspergillus ochraceus/química , Aspergillus ochraceus/metabolismo , Línea Celular Tumoral , Glutatión/metabolismo , Humanos , Alcaloides Indólicos/química , Alcaloides Indólicos/metabolismo , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Estructura Molecular , Neuroprotección/efectos de los fármacos , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/metabolismo , Estrés Oxidativo/efectos de los fármacos , Penicillium/química , Penicillium/metabolismo , Prenilación
5.
Front Nutr ; 9: 1110706, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36712504

RESUMEN

Bagasse is one of major by-product of sugar mills, but its utilization is limited by the high concentration of lignin. In this study, the optimal alkaline hydrogen peroxide (AHP) treatment conditions were determined by the response surface optimization method. The results showed that the lignin removal rate was 62.23% and the solid recovery rate was 53.76% when bagasse was prepared under optimal conditions (1.2% H2O2, 0.9% NaOH, and 46°C for 12.3 h), while higher purity of bagasse insoluble dietary fiber (BIDF) was obtained. To further investigate the modification effect, AHP assisted with high-temperature-pressure cooking (A-H) and enzymatic hydrolysis (A-E) were used to modify bagasse, respectively. The results showed that the water holding capacity (WHC), oil holding capacity (OHC), bile salt adsorption capacity (BSAC), and nitrite ion adsorption capacity (NIAC) were significantly improved after A-H treatment. With the A-E treatment, cation exchange capacity (CEC) and BSAC were significantly increased, while WHC, OHC, and glucose adsorption capacity (GAC) were decreased. Especially, the highest WHC, OHC, BSAC and NIAC were gained by A-H treatment compared to the A-E treatment. These changes in the physicochemical and functional properties of bagasse fiber were in agreement with the microscopic surface wrinkles and pore structure, crystallinity and functional groups. In summary, the A-H modification can effectively improve the functional properties of bagasse fiber, which potentially can be applied further in the food industry.

6.
ACS Appl Mater Interfaces ; 13(42): 50430-50440, 2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34648266

RESUMEN

Combining fabrics with a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) coating is the most promising method to fabricate wearable thermoelectric (TE) devices. However, the high modulus, low strain, and low TE performance of PEDOT:PSS coating lead to poor flexibility and low power generation efficiency. In this study, dimethyl sulfoxide (DMSO) and ionic liquids (ILs) were selected as a modifier to enhance the flexibility and TE performance of PEDOT:PSS. Different from the penetrating structure and coil conformation of pristine PEDOT:PSS coating, a flexible continuous ultrathin layer of PEDOT:PSS/DMSO/1-ethyl-3-methylimidazolium dicyanamide (P/D/ED) with a linear conformation forms on the surface of cotton yarn. The morphology and structure of PEDOT:PSS and P/D/ED coating were characterized by FESEM, XPS, and Raman spectroscopy. Compared with the pristine PEDOT:PSS film, the P/D/ED film shows significantly reduced modules and enhanced strain and bending stability. Moreover, the TE performance of P/D/ED-coated yarn is significantly enhanced with nearly half mass loading. Based on this, a large-area wearable TE fabric with enhanced flexibility and TE performance was prepared. The output power density is 136.1 mW/m2 at ΔT = 40.8 K, which is a typically high value compared with the former reported composite TE fabrics. This study provides a new way to synergistically enhance the flexibility and TE performance of composite yarn, and the prepared TE fabric has great potential as a wearable power source.

7.
ACS Sens ; 5(8): 2545-2554, 2020 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-32672940

RESUMEN

The rapid development of wearable devices puts forward higher requirements for mass-produced integrated smart systems that incorporate multiple electric components, such as energy supplying, multisensing, and communicating. To synchronously realize continuously self-powering, multifunctional sensing, distinguish signals from different stimuli, and productively design and fabricate a large-area sensing array, an all-fabric-based self-powered pressure-temperature-sensing electronic skin (e-skin) was prepared in this study by assembling highly flexible and compressible 3D spacer fabric (SF) and the thermoelectric poly(3,4-ethylenedioxythiophene)poly(styrenesulfonate) (PEDOT:PSS). The all-fabric-based e-skin can efficiently and accurately sense the temperature with a detection resolution of 0.1 K and a response time of 1 s, as well as pressure within a wide range of 200 Pa to 200 kPa and a fast response time of 80 ms. The electricity necessary for driving the sensor can be provided by the temperature difference between the body and environment. Notably, independent voltage and current signals can be generated and read out under the simultaneous temperature-pressure stimuli. For the first time, a real waistcoat-like e-skin with electricity-generating and pressure-temperature-sensing functions on the whole area was designed and prepared by a simple and easy to scale-up production method. All of these features make the developed all-fabric self-powered sensor have very promising applications.


Asunto(s)
Textiles , Dispositivos Electrónicos Vestibles , Electricidad , Temperatura
8.
J Hazard Mater ; 381: 120947, 2020 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-31394395

RESUMEN

Organic-inorganic nanoflower is a new type of functional material that can effectively immobilize a wide range of enzymes to form flower-like structures for various enzymatic applications with enhanced catalytic performance and stability. In order to avoid the processing inconvenience and flower structure damage caused by the particular form of these hybrid nanoflowers during material fabrication and catalytic application, different substrates have been used to carry out supported growth of hybrid nanoflowers. However, all previously used substrates have only 2-dimensional feature and only incorporate hybrid nanoflowers on surface with limited nanoflower loading. In this study, three-dimensional (3D) hierarchically porous nanofibrous PVA-co-PE membranes (HPNM) are prepared by a simple template method for effectively immobilizing laccase-Cu2(PO4)3•3H2O hybrid nanoflowers. Compared with dense nanofibre membrane with only small sized pores (<1 micron), the coexistence of both small and large sized (30-80 microns) pores of HPNM could significantly increase the nanoflower density and allow the penetrated growth of hybrid nanoflowers into the inner structure of the membrane. The hybrid nanoflower containing hierarchically porous nanofibrous membranes (HNF-HPNM) show excellent catalytic performance in degrading different types of textile dyes (reactive blue 2, acid blue 25, acid yellow 76 and indigo carmine), with a degradation efficiency of ˜99.5% for indigo carmine. In addition, the HNF-HPNM could be reused at least 14 times for indigo carmine degradation, with a negligible degradation efficiency drop from 99.48% to 98.52%. These results indicate that hierarchically porous nanofibrous membrane can be a promising type of materials for supported hybrid nanoflower growth for practical applications such as waste water treatment, dye degradation and biosensing.

9.
Colloids Surf B Biointerfaces ; 150: 271-278, 2017 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-28029549

RESUMEN

In this study, poly(vinyl alcohol-co-ethylene) (PVA-co-PE) nanofibrous membrane was activated by sodium hydroxide and cyanuric chloride, and then the activated membranes were functionalized by 1,3-propanediamine, hexamethylenediamine and diethylenetriamine to be affinity membranes for bilirubin removal, respectively. The chemical structures and morphologies of membranes were investigated by SEM, FTIR and XPS. And the adsorption ability of different amine-functionalized nanofibrous membranes for bilirubin was characterized. Furthermore, the effects of temperature, initial concentration of bilirubin, NaCl concentration and BSA concentration on the adsorption capacity for bilirubin of diethylenetriamine-functionalized nanofibrous membrane were studied. Results indicated that the adsorption capacity for bilirubin of diethylenetriamine-functionalized nanofibrous membrane could reach 85mg/g membrane when the initial bilirubin concentration was 200mg/L while the adsorption capacity could be increased to 110mg/g membrane if the initial bilirubin concentration was more than 400mg/L. The dynamic adsorption of diethylenetriamine-functionalized nanofibrous membrane showed that the ligands of amine groups on the membrane surface could be used as far as possible by recirculating the plasma with certain flow rates. Therefore, the diethylenetriamine-functionalized PVA-co-PE nanofibrous membrane possessed high adsorption capacity for bilirubin and it can be candidate as affinity membrane for bilirubin removal.


Asunto(s)
Aminas/química , Bilirrubina/química , Membranas Artificiales , Polietileno/química , Alcohol Polivinílico/química , Adsorción , Diaminas/química , Humanos , Ligandos , Microscopía Electrónica de Rastreo , Nanotecnología/métodos , Poliaminas/química , Hidróxido de Sodio/química , Espectrometría por Rayos X , Espectroscopía Infrarroja por Transformada de Fourier , Triazinas/química
10.
ACS Appl Mater Interfaces ; 7(36): 20046-52, 2015 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-26275118

RESUMEN

The bioluminescent reaction catalyzed by firefly luciferase has become widely established as an outstanding analytical system for assay of adenosine triphosphate (ATP). When in solution, the luciferase is unstable and cannot be reused. The problem can be partially solved by immobilizing the luciferase on solid substrates. The poly(vinyl alcohol-co-ethylene) (PVA-co-PE) nanofibers membrane has abundant active hydroxyl groups on the surface. The PVA-co-PE nanofibers membrane was first activated by cyanuric chloride with triazinyl group. Then the activated PVA-co-PE nanofibers membrane was subsequently reacted with 1,3-propanediamine and biotin. The firefly luciferase was immobilized onto the surface of 1,3-propanediamine- and biotin-functionalized membranes. The surface chemical structure and morphologies of nanofibers membranes were characterized by FTIR-ATR spectra and SEM. The hydrophilicity of membranes was tested by water contact angle measurements. The detection of fluorescence intensity displayed that the firefly-luciferase-immobilized PVA-co-PE nanofibers membranes indicated high catalytic activity and efficiency. Especially, the firefly-luciferase-immobilized nanofiber membrane which was functionalized by biotin can be a promising candidate as biosensor for bioluminescent detection of ATP because of its high detection sensitivity.


Asunto(s)
Adenosina Trifosfato/análisis , Técnicas Biosensibles , Luciferasas de Luciérnaga/química , Nanofibras/química , Polímeros/química , Animales , Biocatálisis , Diaminas/química , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Luciérnagas/enzimología , Interacciones Hidrofóbicas e Hidrofílicas , Luciferasas de Luciérnaga/metabolismo , Mediciones Luminiscentes , Polietileno/química , Polímeros/síntesis química , Alcohol Polivinílico/química , Espectroscopía Infrarroja por Transformada de Fourier
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...