Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 14(6)2022 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-35335564

RESUMEN

Zinc oxide (ZnO), which is toxic to aquatic organisms, is widely used as an activator in the rubber industry. The reduction of ZnO content is one of the efficient ways to tackle ecological environment impacts induced by ZnO. However, the incompatibility between Zn2+ and organic matrix inhibits the solubility and activity of Zn2+ in the organic matrix, causing the heavy use of ZnO. This work develops a phase transfer agent with Zn2+-philic structure and oleophilic structure to increase the solubility of Zn2+ in the organic matrix. The phase transfer agent and Zn2+ form coordination interactions, while the hydrophobic chains of phase transfer agent and organic matrix form hydrophobic interactions. The above two interactions improve the solubility and activity of Zn2+ in the organic matrix, contributing to the formation of crosslinking network. Through the phase transfer agent strategy, we obtain the mechanically robust elastomers, and the samples with low ZnO content still maintain the superior properties. This work provides an efficient way to reduce ZnO content without sacrificing the performance of elastomers.

2.
Macromol Rapid Commun ; 42(24): e2100509, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34562290

RESUMEN

Strength and toughness are usually mutually exclusive for materials. The sacrificial bond strategy is used to address the trade-off between strength and toughness. However, the complex construction process of sacrificial network limits the application of sacrificial network. This work develops a facile strategy to construct an interfacial interactions-driven sacrificial network. The authors' group finds that there are the interfacial interactions between arginines (A) aggregates and molecular chains. Such interfacial interactions result in the mechanical properties of samples having a strong dependence on extension rates, which shows that A aggregates construct a network structure by interfacial interactions. The interfacial interactions between A aggregates and chains improve the strength of samples; while the A aggregate network driven by interfacial interactions preferentially ruptures to dissipate large energy for the improvement of fracture toughness, which can be considered as a sacrificial network. Therefore, their designed elastomers have both high strength and high toughness. This work provides an easier strategy for the construction of sacrificial networks, which can promote the industrial application of sacrificial networks in elastomer materials.

3.
Macromol Rapid Commun ; 42(9): e2000762, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33723875

RESUMEN

Thermo-oxidative process leads to the structure damage of elastomers, such as the scission of main chains and destruction of crosslinks. The problem that damaged structure brings about the deterioration of mechanical properties has not been solved by the conventional anti-aging methods. Inspired by self-healing process, a structure recovery strategy for recovering the damaged structure induced by thermo-oxidative process is proposed, which endows elastomers with superior thermo-oxidative resistance. The high reactivity between 1,3-diisopropenylbenzene and free radicals realizes high recovery efficiency (from 83% to 118%); the changes in topology structure during recovery process make much more rubber chains bear external stress and improve mechanical properties significantly (from 18.5 to 29.6 MPa). This work paves the way for the development of elastomers with superior thermo-oxidative resistance, meanwhile this work is helpful to push the theoretical research of self-healing to practical application.


Asunto(s)
Elastómeros , Estrés Oxidativo , Radicales Libres
4.
Sci Rep ; 10(1): 16417, 2020 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-33009499

RESUMEN

Under high-speed strain, the thermogenesis performance of natural rubber products is unstable, leading to aging and early failure of the material. The quality of rubber latex and eventually that of the final products depends among others on the protein content. We found that when the protein is almost removed, the heat generated by the vulcanized rubber increases rapidly. After adding soy protein isolate to the secondary purification rubber, the heat generation of the vulcanized rubber is reduced, and the heat generation is the lowest when the added amount is 2.5-3.0 phr, which on account of protein promotes the construction of a vulcanization network and increases the rigidity of the rubber chain, resulting in a decrease in the potential frictional behavior of the rubber chain during the curl up-extension process.

5.
ACS Appl Mater Interfaces ; 12(12): 14468-14475, 2020 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-32129596

RESUMEN

Mechanical strength and toughness are usually mutually exclusive, but they can both appear in natural rubber (NR). Previous studies ascribe such excellent properties to highly cis stereoregularity of NR. To our surprise, after the removal of non-rubber components (NRC) by centrifugation, the strength and toughness of NR decrease dramatically. It is still a challenge for us to make out for the problem of how NRC affect the properties of NR. Our group ascribes the superior mechanical robustness of NR to NRC. To further verify such a viewpoint, we add phospholipids (phosphatidylcholines) into NR without NRC. Phosphatidylcholines construct a sacrificial network, which ruptures preferentially upon deformation to dissipate energy. Moreover, some of phosphatidylcholines participate in the vulcanization reaction, which further improves the mechanical strength and energy dissipation. As a result, the mechanical strength and toughness of samples are as high as 21.1 MPa and 49.6 kJ/m2, respectively, which have reached the same level as that of NR. Therefore, this work not only imitates the excellent mechanical robustness of NR but also further provides a rational design for elastomers with excellent mechanical robustness.


Asunto(s)
Fenómenos Mecánicos , Fosfolípidos/química , Goma/química , Butadienos/química , Elastómeros/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...