Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Oncogene ; 43(33): 2504-2516, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38969770

RESUMEN

Despite significantly improved clinical outcomes in EGFR-mutant lung adenocarcinoma, all patients develop acquired resistance and malignancy on the treatment of EGFR tyrosine kinase inhibitors (EGFR-TKIs). Understanding the resistance mechanisms is crucial to uncover novel therapeutic targets to improve the efficacy of EGFR-TKI treatment. Here, integrated analysis using RNA-Seq and shRNAs metabolic screening reveals glutathione S-transferase omega 1 (GSTO1) as one of the key metabolic enzymes that is required for EGFR-TKIs resistance in lung adenocarcinoma cells. Aberrant upregulation of GSTO1 confers EGFR-TKIs resistance and tumor metastasis in vitro and in vivo dependent on its active-site cysteine 32 (C32). Pharmacological inhibition or knockdown of GSTO1 restores sensitivity to EGFR-TKIs and synergistically enhances tumoricidal effects. Importantly, nucleophosmin 1 (NPM1) cysteine 104 is deglutathionylated by GSTO1 through its active C32 site, which leads to activation of the AKT/NF-κB signaling pathway. In addition, clinical data illustrates that GSTO1 level is positively correlated with NPM1 level, NF-κB-mediated transcriptions and progression of human lung adenocarcinoma. Overall, our study highlights a novel mechanism of GSTO1 mediating EGFR-TKIs resistance and malignant progression via protein deglutathionylation, and GSTO1/NPM1/AKT/NF-κB axis as a potential therapeutic vulnerability in lung adenocarcinoma.


Asunto(s)
Adenocarcinoma del Pulmón , Resistencia a Antineoplásicos , Receptores ErbB , Glutatión Transferasa , Neoplasias Pulmonares , Proteínas Nucleares , Nucleofosmina , Inhibidores de Proteínas Quinasas , Humanos , Resistencia a Antineoplásicos/genética , Receptores ErbB/metabolismo , Receptores ErbB/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Glutatión Transferasa/metabolismo , Glutatión Transferasa/genética , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Animales , Ratones , Línea Celular Tumoral , Metástasis de la Neoplasia , Transducción de Señal , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , FN-kappa B/metabolismo
2.
Front Public Health ; 12: 1366795, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38962784

RESUMEN

Background: Antiretroviral therapy (ART) has been shown to reduce human immunodeficiency virus (HIV) viral replication and ultimately achieve viral suppression and eliminate HIV transmission. However, little is known about the impact of viral suppression on high-risk behaviors and sexually transmitted infections (STIs). Objective: This study aimed to assess the rates of current syphilis infection in virally suppressed people living with HIV (PLWH) and whether with the duration of ART can reduce the current syphilis infection in eastern China. Method: We conducted a cross-sectional survey of PLWH in Zhejiang Province, China, in 2022. PLWH who were on ART >6 months and were virally suppressed (viral load <50 copies/mL) were included in the study. Data were collected from the National Epidemiological Database of Zhejiang Province and all participants were tested for viral load and current syphilis. Multivariable logistic regression was used to identify risk factors associated with current syphilis infection. Result: A total of 30,744 participants were included in the analysis. 82.7% of participants were male, the mean age was 44.9 ± 14.1 years, 84.9% had received ART in a hospital setting, the mean time on ART was 5.9 ± 3.1 years and 5.6% of participants were infected with current syphilis. Multivariable logistic regression showed that being male [adjusted odds ratio (aOR): 2.12, 95% confidence interval (CI): 1.69-2.66], high level of education (aOR: 1.23, 95% CI: 1.02-1.49), homosexual route of HIV infection (aOR: 1.80, 95% CI: 1.60-2.04), non-local registered residence (aOR: 1.29, 95% CI: 1.11-1.51), had history of STIs before HIV diagnosis (aOR: 1.95, 95 % CI: 1.75-2.18) and treatment provided by a municipal hospital (aOR: 2.16, 95% CI: 1.31-3.55) were associated with increased risk of current syphilis infection. Being married (aOR: 0.67, 95% CI: 0.58-0.76) was associated with a decreased risk of current syphilis infection. Conclusion: Our findings revealed a high rate of current syphilis infection among virally suppressed PLWH in eastern China. Duration of ART did not reduce the prevalence of current syphilis infection. Targeted interventions to reduce current syphilis infection should be prioritized for subgroups at higher risk.


Asunto(s)
Infecciones por VIH , Sífilis , Carga Viral , Humanos , Sífilis/epidemiología , Estudios Transversales , Masculino , Adulto , Infecciones por VIH/epidemiología , Infecciones por VIH/complicaciones , Femenino , China/epidemiología , Persona de Mediana Edad , Factores de Riesgo
3.
Org Lett ; 26(26): 5511-5516, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38904436

RESUMEN

1,2,4-Triazoles are privileged scaffolds for many pharmaceuticals, and methods for structurally diverse compound libraries are of current interest. Here we report an efficient coupling of α-diazoacetates with amino acid-derived alkyl N-hydroxy phthalimide esters, under metal-free conditions involving 1,8-diazabicyclo(5.4.0)undec-7-ene as the base, with which highly functionalized 1,2,4-triazoles can be obtained in excellent yields with remarkable functional group tolerance. Preliminary studies revealed that 1,2,4-triazole 3a exhibits potent inhibition of tyrosinase activities in melanoma B16F10 cell lines, demonstrating promising skin-whitening properties.


Asunto(s)
Aminoácidos , Ésteres , Triazoles , Animales , Ratones , Aminoácidos/química , Aminoácidos/síntesis química , Reacción de Cicloadición , Ésteres/química , Estructura Molecular , Monofenol Monooxigenasa/antagonistas & inhibidores , Monofenol Monooxigenasa/metabolismo , Triazoles/química , Triazoles/síntesis química , Triazoles/farmacología , Ftalimidas/química
4.
Opt Express ; 32(12): 21400-21411, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38859494

RESUMEN

Multi-mode multiplexing optical interconnection (MMOI) has been widely used as a new technology that can significantly expand communication bandwidth. However, the constant-on state of each channel in the existing MMOI systems leads to serious interference for receivers when extracting and processing information, necessitating introducing real-time selective-on function for each channel in MMOI systems. To achieve this goal, combining several practical requirements, we propose a real-time selective mode switch based on phase-change materials, which can individually tune the passing/blocking of different modes in the bus waveguide. We utilize our proposed particle swarm optimization algorithm with embedded neural network surrogate models (NN-in-PSO) to design this mode switch. The proposed NN-in-PSO significantly reduces the optimization cost, enabling multi-dimensional simultaneous optimization. The resulting mode switch offers several advantages, including ultra-compactness, rapid tuning, nonvolatility, and large extinction ratio. Then, we demonstrate the real-time channel selection function by integrating the mode switch into the MMOI system. Finally, we prove the fabricating robustness of the proposed mode switch, which paves the way for its large-scale application.

5.
Opt Express ; 32(7): 11221-11240, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38570975

RESUMEN

Laser-guided detector and infrared detection have attracted increasing attention in a wide range of research fields, including multispectral detection, radiative cooling, and thermal management. Previously reported absorbers presented shortcomings of lacking either tunability or compatibility. In this study, a metamaterial perfect absorber based on a Helmholtz resonator and fractal structure is proposed, which realizes tunable perfect absorptivity (α 1.06µ m >0.99,α 10.6µ m >0.99) of guided-laser radar dual operating bands (1.06 µm and 10.6 µm) and a low infrared average emissivity (ε¯3-5µ m =0.03,ε¯8-14µ m =0.31) in two atmospheric windows for compatible camouflage. The proposed perfect absorber provides a dynamically tunable absorptivity without structural changes and can be applied to optical communication, military stealth or protection, and electromagnetic detection.

6.
Front Vet Sci ; 11: 1364740, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38601912

RESUMEN

Background: Mosquito-borne diseases pose serious public health threats in Zhejiang Province, China, and vector control is believed to be the primary method for reducing transmission. Due to severe resistance problems, effective and sustainable methods without chemical insecticides are urgently required to control mosquito vectors. Attractive toxic sugar baits (ATSB) are newly developed methods to control mosquitoes in recent decades with the core element sugar bait, which was invented according to the sugar-feeding behavior of mosquitoes. In this study, we developed a Novel Sugar Bait Device (NSBD) trap by combining sugar bait and physical adhesive capture technology. The study aimed to evaluate the effect of the NSBD trap on controlling mosquitoes in residential environments and to identify the optimal sugar solution concentration in the sugar bait of the NSBD for real use. Methods: Four residential villages in Ningbo City with similar geographic environments and mosquito densities were selected for field trials in 2022. One village (site 1) was designated as the control group, and three villages (sites 2-4) served as the test groups to assess the effectiveness of NSBD traps with different sugar solution concentrations (6, 8, and 10%) in the sugar bait. Larval and adult mosquito densities were monitored monthly before and semi-monthly after the trials using the CDC light trap and larval pipette method. Results: Before the trials, we monitored mosquito density for 3 months to confirm the baseline mosquito density among the four sites, and no statistical differences in adult and larval mosquitoes were found (adult, F = 3.047, p > 0.05; larvae, F = 0.436, p > 0.05). After the trials, all NCBD traps effectively controlled larval and adult mosquito densities, with the highest standard decrease rates of larval and adult mosquito densities at 57.80 and 86.31%, respectively, observed in site 4. The most suitable sugar solution concentration in the sugar bait was 10%. Conclusion: NSBD traps effectively controlled mosquitoes in residential environments during field trials. Without the use of insecticides, this may be a promising choice for mosquito vector control to prevent mosquito-borne diseases.

7.
Plant Physiol ; 195(2): 1681-1693, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38478507

RESUMEN

Fusarium head blight (FHB), caused by Fusarium graminearum, causes huge annual economic losses in cereal production. To successfully colonize host plants, pathogens secrete hundreds of effectors that interfere with plant immunity and facilitate infection. However, the roles of most secreted effectors of F. graminearum in pathogenesis remain unclear. We analyzed the secreted proteins of F. graminearum and identified 255 candidate effector proteins by liquid chromatography-mass spectrometry (LC-MS). Five subtilisin-like family proteases (FgSLPs) were identified that can induce cell death in Nicotiana benthamiana leaves. Further experiments showed that these FgSLPs induced cell death in cotton (Gossypium barbadense) and Arabidopsis (Arabidopsis thaliana). A signal peptide and light were not essential for the cell death-inducing activity of FgSLPs. The I9 inhibitor domain and the entire C-terminus of FgSLPs were indispensable for their self-processing and cell death-inducing activity. FgSLP-induced cell death occurred independent of the plant signal transduction components BRI-ASSOCIATED KINASE 1 (BAK1), SUPPRESSOR OF BIR1 1 (SOBIR1), ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1), and PHYTOALEXIN DEFICIENT 4 (PAD4). Reduced virulence was observed when FgSLP1 and FgSLP2 were simultaneously knocked out. This study reveals a class of secreted toxic proteins essential for F. graminearum virulence.


Asunto(s)
Arabidopsis , Muerte Celular , Fusarium , Nicotiana , Enfermedades de las Plantas , Fusarium/patogenicidad , Virulencia , Arabidopsis/microbiología , Arabidopsis/genética , Enfermedades de las Plantas/microbiología , Nicotiana/microbiología , Nicotiana/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Subtilisinas/metabolismo , Subtilisinas/genética , Gossypium/microbiología , Hojas de la Planta/microbiología , Células Vegetales/microbiología
8.
Plant Sci ; 342: 112033, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38354753

RESUMEN

The receptor-like cytoplasmic kinase BRASSINOSTEROID-SIGNALING KINASE1 (BSK1) interacts with pattern recognition receptor (PRR) FLAGELLIN SENSING2 (FLS2) and positively regulates plant innate immunity in Arabidopsis thaliana. However, the molecular components involved in BSK1-mediated immune signaling remain largely unknown. To further explore the molecular mechanism underlying BSK1-mediated disease resistance, we screened two cysteine proteases, RESPONSE TO DEHYDRATION 19 (RD19) and RD19-LIKE 2 (RDL2), as BSK1-binding partners. Overexpression of RD19, but not RDL2, displayed an autoimmune phenotype, presenting programmed cell death and enhanced resistance to multiple pathogens. Interestingly, RD19-mediated immune activation depends on BSK1, as knockout of BSK1 in RD19-overexpressing plants rescued their autoimmunity and abolished the increased resistance. Furthermore, we found that BSK1 plays a positive role in maintaining RD19 protein abundance in Arabidopsis. Our results provide new insights into BSK1-mediated immune signaling and reveal a potential mechanism by which BSK1 stabilizes RD19 to promote effective immune output.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteasas de Cisteína , Proteínas Serina-Treonina Quinasas , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brasinoesteroides/metabolismo , Proteasas de Cisteína/genética , Proteasas de Cisteína/metabolismo , Deshidratación , Resistencia a la Enfermedad/genética , Inmunidad de la Planta/genética , Proteínas Serina-Treonina Quinasas/genética
9.
New Phytol ; 241(1): 363-377, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37786257

RESUMEN

Nuclear pore complex (NPC) is composed of multiple nucleoporins (Nups). A plethora of studies have highlighted the significance of NPC in plant immunity. However, the specific roles of individual Nups are poorly understood. NUCLEAR PORE ANCHOR (NUA) is a component of NPC. Loss of NUA leads to an increase in SUMO conjugates and pleiotropic developmental defects in Arabidopsis thaliana. Herein, we revealed that NUA is required for plant defense against multiple pathogens. NUCLEAR PORE ANCHOR associates with the transcriptional corepressor TOPLESS-RELATED1 (TPR1) and contributes to TPR1 deSUMOylation. Significantly, NUA-interacting protein EARLY IN SHORT DAYS 4 (ESD4), a SUMO protease, specifically deSUMOylates TPR1. It has been previously established that the SUMO E3 ligase SAP AND MIZ1 DOMAIN-CONTAINING LIGASE 1 (SIZ1)-mediated SUMOylation of TPR1 represses the immune-related function of TPR1. Consistent with this notion, the hyper-SUMOylated TPR1 in nua-3 leads to upregulated expression of TPR1 target genes and compromised TPR1-mediated disease resistance. Taken together, our work uncovers a mechanism by which NUA positively regulates plant defense responses by coordination with ESD4 to deSUMOylate TPR1. Our findings, together with previous studies, reveal a regulatory module in which SIZ1 and NUA/ESD4 control the homeostasis of TPR1 SUMOylation to maintain proper immune output.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Inmunidad de la Planta , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Ligasas/metabolismo , Poro Nuclear/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Sumoilación
10.
Journal of Preventive Medicine ; (12): 543-547, 2024.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1038992

RESUMEN

Objective@#To explore the effects of different concentrations of glucose solution on the survival of Aedes albopictus and Culex pipiens pallens larvae, the attraction to mosquitoes and egg-laying behaviors, so as to provide the reference for developing mosquito control technology based on sugar bait.@*Methods@#White porcelain bowls were filled with 100 mL of 3%, 5%, 8%, 10% and 15% glucose solutions. Ten of fourth instar larvae of Aedes albopictus or Culex pipiens pallens were added to each bowl, and the survival of larvae was recorded after 2, 4, 6, 24, 48 and 72 hours. Egg-laying cups containing 5%, 8% and 15% glucose solution were put in mosquito cages containing fully blooded female mosquitoes of Aedes albopictus and Culex pipiens pallens (50 mosquitoes each), and the total number of eggs laid in 72 hours was observed. The analogous site room was filled with fully blooded and starved female mosquitoes of Aedes albopictus and Culex pipiens pallens (100 mosquitoes each), and simple mosquito control buckets containing 5% and 8% glucose solution and black sticky insect plates. The number of mosquitoes and eggs was observed after 6 days. All the above experiments were repeated 3 times using dechlorinated water as the control.@*Results@#The 72 hour corrected mortality rates of Aedes albopictus and Culex pipiens pallens larvae gradually increased with the increase of glucose concentration. The glucose solution with 5% and higher concentrations was not suitable for mosquito larvae to survive. The attraction of egg-laying behaviors to Aedes albopictus and Culex pipiens pallens gradually decreased with the increase of glucose concentration. The effects were similar between 5% and 8% glucose solution, with the averages of 686.67 and 682.33 eggs for Aedes albopictus, and 3.00 and 2.33 egg rafts for Culex pipiens pallens. In analogous site room, there were 93.33, 105.00 and 130.33 adult mosquitoes captured on average in the control group, 5% and 8% glucose solution groups, respectively, with 8% glucose solution group more attractive to adult mosquitoes than the control group (F=3.283, P=0.030); there were 70.33, 55.33 and 63.00 Aedes albopictus eggs (eggs counts+larvae counts) on average, respectively, with statistically significant differences among the three groups (H=6.761, P=0.034).@*Conclusion@#Glucose solution with concentration of 5% or higher can effectively inhibit the survival of Aedes albopictus and Culex pipiens pallens larvae, and attractive to adult mosquitoes and egg-laying behavoirs.

11.
Front Vet Sci ; 10: 1268440, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38089699

RESUMEN

Objectives: This study aimed to analyze the population density of vector ticks and reservoir hosts rodents, and to investigate the relevant pathogen infection in Zhejiang Province, China. Methods: In this surveillance study, the data of ticks density were collected with the tick picking method on animal body surface and the drag-flag method, while the rodent density with the night trapping method. The samples of ticks were examined for the severe fever with thrombocytopenia syndrome virus (SFTSV), and blood serum and organs from rodents were subjected for SFTSV, hantavirus, Leptospira, Orientia tsutsugamushi (O. tsutsugamushi) and Yersinia pestis (Y. pestis) screening in the laboratory. Results: From 2017 to 2022 in Zhejiang Province, 16,230 parasitic ticks were found in 1848 positive animals, with the density of parasitic ticks of 1.29 ticks per host animal, and a total of 5,201 questing ticks were captured from 1,140,910 meters of vegetation distance with the questing tick density of 0.46 ticks/flag·100 m. Haemaphysalis longicornis (H. longicornis) was the major species. A total of 2,187,739 mousetraps were distributed and 12,705 rodents were trapped, with the density of 0.58 per 100 trap-nights. Rattus norvegicus was the major species. For SFTSV screening, two groups nymphal ticks of H. longicornis were tested to be positive. For the rodents samples, the Leptospira had a positive rate of 12.28% (197/1604), the hantavirus was 1.00% (16/1604), and the O. tsutsugamushi was 0.15% (2/1332). No positive results were found with SFTSV and Y. pestis in the rodents samples. Conclusion: Findings from this study indicated that the ticks and rodents were widely distributed in Zhejiang Province. Particularly, the positive detection of SFTSV, Leptospira, hantavirus and O. tsutsugamushi in ticks or rodents from this area suggested that more attention should be paid to the possibilities of relevant vector-borne diseases occurrence.

13.
BMC Public Health ; 23(1): 1973, 2023 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-37821916

RESUMEN

Dengue fever is one of the biggest threats to public health in China, causing huge disease burden and economic loss. Aedes-mosquito surveillance could be a cornerstone for predicting the risk of Aedes-borne diseases and evaluating the effect of vector management during diseases outbreaks. The human landing catch (HLC) method is regarded as the "gold standard" for catching Aedes mosquitoes, but it potentially exposes field professionals to vectors of known or unknown pathogens. Human-baited double net (HDN) was recommended to replace HLC for emergency monitoring in China when Aedes-borne diseases break out, but it had been reported with low efficiency for capturing Aedes mosquitoes. In this study, we compared HLC with HDN and BG traps for field Aedes albopictus monitoring, with the aim of evaluating the effectiveness of HDN replacing HLC and finding an effective and safe alternative to the HLC for monitoring Aedes albopictus. Six sites in Hangzhou, Shaoxing, and Yiwu, Zhejiang Province, China, were chosen to conduct outdoor HLC, HDN, and BG trap catches from June to October 2021. The tests were performed 3 h apart: 8:30-9:30 AM, 16:30-17:30 PM, and 17:30-18:30 PM. A total of 2330 adult mosquitoes were collected, and Aedes albopictus was the most abundant species in all three catches with 848(98.95%), 559(97.39%) and 867 (96.44%) caught in HLC, HDN and BG traps respectively. Compared to HLC, HDN collected significantly less Ae. albopictus and Ae. albopictus females per trapping period (P < 0.001, P < 0.001), whereas no statistical differences were found between the HLC and BG trap (P = 0.970, P > 0.05). Statistically significant positive spatial correlations for Ae. albopictus sampling was found between HLC and HDN traps (r = 0.543, P < 0.001) and HLC and BG traps (r = 0.658, P < 0.001). In conclusion, both the BG trap and HDN have a significant positive spatial correlation with HLC, making them safer alternatives to HLC for Ae. albopictus monitoring in China. However, with better a sampling efficiency, being less labor intensive, and no human-baited attraction bias, the BG trap could be a better choice than the HDN trap.


Asunto(s)
Aedes , Adulto , Animales , Femenino , Humanos , Control de Mosquitos/métodos , Mosquitos Vectores , China
14.
Front Public Health ; 11: 1153303, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37469696

RESUMEN

Introduction: The COVID-19 pandemic continues to ravage the world, and mutations of the SARS-CoV-2 continues. The new strain has become more transmissible. The role of aerosol transmission in the pandemic deserves great attention. Methods: In this observational study, we collected data from market customers and stallholders who had been exposed to the virus in the Qingkou night market on July 31 and were subsequently infected. We analyzed the possible infection zones of secondary cases and aerosol suspension time in ambient air. We described and analyzed the characteristics of the secondary cases and the transmission routes for customers. Results: The point source outbreak of COVID-19 in Qingkou night market contained a cluster of 131 secondary cases. In a less-enclosed place like the Qingkou night market, aerosols with BA.5.2 strain released by patients could suspend in ambient air up to 1 h 39 min and still be contagious. Conclusion: Aerosols with viruses can spread over a relatively long distance and stay in ambient air for a long time in a less enclosed space, but shorter than that under experimental conditions. Therefore, the aerosol suspension time must be considered when identifying and tracing close contact in outbreak investigations.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Pandemias , COVID-19/epidemiología , Aerosoles y Gotitas Respiratorias
15.
Biology (Basel) ; 12(7)2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37508365

RESUMEN

Blood-based detection of circulating cell-free DNA (cfDNA) is a non-invasive and easily accessible method for early cancer detection. Despite the extensive utility of cfDNA, there are still many challenges to developing clinical biomarkers. For example, cfDNA with genetic alterations often composes a small portion of the DNA circulating in plasma, which can be confounded by cfDNA contributed by normal cells. Therefore, filtering out the potential false-positive cfDNA mutations from healthy populations will be important for cancer-based biomarkers. Additionally, many low-frequency genetic alterations are easily overlooked in a small number of cfDNA-based cancer tests. We hypothesize that the combination of diverse types of cancer studies on cfDNA will provide us with a new perspective on the identification of low-frequency genetic variants across cancer types for promoting early diagnosis. By building a standardized computational pipeline for 1358 cfDNA samples across seven cancer types, we prioritized 129 shard genetic variants in the major cancer types. Further functional analysis of the 129 variants found that they are mainly enriched in ribosome pathways such as cotranslational protein targeting the membrane, some of which are tumour suppressors, oncogenes, and genes related to cancer initiation. In summary, our integrative analysis revealed the important roles of ribosome proteins as common biomarkers in early cancer diagnosis.

16.
Biosci Trends ; 17(3): 239-244, 2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37344393

RESUMEN

The novel coronavirus disease 2019 (COVID-19) pandemic has revealed that infectious diseases will present a significant worldwide threat for a long time in the future. Centers for Disease Prevention and Control (CDCs) worldwide have developed for nearly 80 years to fight against infectious disease and protect public health. However, at the advent of the 21th century, the responsibility for prevention and control of infectious diseases has gradually been marginalized in the CDC system. The COVID-19 pandemic has also provided a glimpse into the overburdened operational process and inadequate personnel reserve of the current system of CDCs. In addition, a long-term multisectoral joint mechanism has not been created for sharing information and cooperation to facilitate public health. Reform of the system of CDCs or public health is very necessary. A global prevention and control system should be envisioned and implemented worldwide, and vertical management should be implemented throughout all levels of CDCs to improve their structure and administrative status. The WHO should expand its scope of responsibilities, especially with regard to mechanisms for joint prevention and control of infectious diseases, to substantially implement the "One Health" concept. The International Health Regulations (IHR) and relevant laws and regulations should enshrine the CDC's authority in administration and policy-making to deal with outbreaks or pandemics of infectious diseases.


Asunto(s)
COVID-19 , Enfermedades Transmisibles , Humanos , Salud Global , Pandemias/prevención & control , COVID-19/prevención & control , Organización Mundial de la Salud
17.
Chemosphere ; 332: 138893, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37164197

RESUMEN

Dissimilatory soil arsenic (As) reduction and release are driven by microbial extracellular electron transfer (EET), while reverse EET mediates soil methane (CH4) emission. Nevertheless, the detailed biogeochemical mechanisms underlying the tight links between soil As migration and methanogenesis are unclear. This study used a bioelectrochemical-based system (BES) to explore the potential effects of zero-valent iron (ZVI) addition on "As migration-CH4 emission" interactions from chemical and microbiological perspectives. Voltage and ZVI amendment experiments showed that dissolved As was efficiently immobilized with increased CH4 production in the soil BES, As release and CH4 production exhibited a high negative exponential correlation, and reductive As dissolution could be entirely inhibited in the methanogenic stage. Gene quantification and bacterial community analysis showed that in contrast to applied voltage, ZVI changed the spatial heterogeneity of the distribution of electroactive microorganisms in the BES, significantly decreasing the relative abundance of arrA and dissimilatory As/Fe-reducing bacteria (e.g., Geobacter) while increasing the abundance of aceticlastic methanogens (Methanosaeta), which then dominated CH4 production and As immobilization after ZVI incorporation. In addition to biogeochemical activities, coprecipitation with ferric (iron) contributed 77-93% dissolved As removal under ZVI addition. This study will enhance our knowledge of the processes and microorganisms controlling soil As migration and CH4 emission.


Asunto(s)
Arsénico , Hierro , Hierro/metabolismo , Suelo , Bacterias/genética , Bacterias/metabolismo , Metano/metabolismo
18.
Ecol Lett ; 26(8): 1325-1335, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37190868

RESUMEN

While the relationship between food web complexity and stability has been well documented, how complexity affects productivity remains elusive. In this study, we combine food web theory and a data set of 149 aquatic food webs to investigate the effect of complexity (i.e. species richness, connectance, and average interaction strength) on ecosystem productivity. We find that more complex ecosystems tend to be more productive, although different facets of complexity have contrasting effects. A higher species richness and/or average interaction strength increases productivity, whereas a higher connectance often decreases it. These patterns hold not only between realized complexity and productivity, but also characterize responses of productivity to simulated declines of complexity. Our model also predicts a negative association between productivity and stability along gradients of complexity. Empirical analyses support our predictions on positive complexity-productivity relationships and negative productivity-stability relationships. Our study provides a step forward towards reconciling ecosystem complexity, productivity and stability.


Asunto(s)
Ecosistema , Modelos Biológicos , Cadena Alimentaria , Biodiversidad
19.
Carbon Balance Manag ; 18(1): 5, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36947268

RESUMEN

BACKGROUND: Forest above-ground biomass (AGB) accumulation is widely considered an important tool for mitigating climate change. However, the general pattern of forest AGB accumulation associated with age and climate gradients across various forest functional types at a global scale have remained unclear. In this study, we compiled a global AGB data set and applied a Bayesian statistical model to reveal the age-related dynamics of forest AGB accumulation, and to quantify the effects of mean annual temperature and annual precipitation on the initial AGB accumulation rate and on the saturated AGB characterizing the limit to AGB accumulation. RESULTS: The results of the study suggest that mean annual temperature has a significant positive effect on the initial AGB accumulation rate in needleleaf evergreen forest, and a negative effect in broadleaf deciduous forest; whereas annual precipitation has a positive effect in broadleaf deciduous forest, and negative effect in broadleaf evergreen forest. The positive effect of mean annual temperature on the saturated AGB in broadleaf evergreen forest is greater than in broadleaf deciduous forest; annual precipitation has a greater negative effect on the saturated AGB in deciduous forests than in evergreen forests. Additionally, the difference of AGB accumulation rate across four forest functional types is closely correlated with the forest development stage at a given climate. CONCLUSIONS: The contrasting responses of AGB accumulation rate to mean annual temperature and precipitation across four forest functional types emphasizes the importance of incorporating the complexity of forest types into the models which are used in planning climate change mitigation. This study also highlights the high potential for further AGB growth in existing evergreen forests.

20.
Drug Resist Updat ; 68: 100957, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36990047

RESUMEN

Resistance to epidermal growth factor receptor (EGFR) inhibitors, from the first-generation erlotinib to the third generation osimertinib, is a clinical challenge in the treatment of patients with EGFR-mutant lung adenocarcinoma. Our previous work found that a novel allosteric inhibitor of phosphoglycerate mutase 1 (PGAM1), HKB99, restrains erlotinib resistance in lung adenocarcinoma cells. However, the role of HKB99 in osimertinib resistance and its underlying molecular mechanism remains to be elucidated. Herein, we found that IL-6/JAK2/STAT3 signaling pathway is aberrantly activated in both erlotinib and osimertinib resistant cells. Importantly, HKB99 significantly blocks the interaction of PGAM1 with JAK2 and STAT3 via the allosteric sites of PGAM1, which leads to inactivation of JAK2/STAT3 and thereby disrupts IL-6/JAK2/STAT3 signaling pathway. Consequently, HKB99 remarkably restores EGFR inhibitor sensitivity and exerts synergistic tumoricidal effect. Additionally, HKB99 alone or in combination with osimertinib down-regulated the level of p-STAT3 in xenograft tumor models. Collectively, this study identifies PGAM1 as a key regulator in IL-6/JAK2/STAT3 axis in the development of resistance to EGFR inhibitors, which could serve as a therapeutic target in lung adenocarcinoma with acquired resistance to EGFR inhibitors.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Clorhidrato de Erlotinib/farmacología , Clorhidrato de Erlotinib/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Interleucina-6/genética , Interleucina-6/farmacología , Interleucina-6/uso terapéutico , Fosfoglicerato Mutasa/metabolismo , Fosfoglicerato Mutasa/farmacología , Resistencia a Antineoplásicos , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Receptores ErbB , Transducción de Señal , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Mutación , Línea Celular Tumoral , Janus Quinasa 2/genética , Janus Quinasa 2/metabolismo , Janus Quinasa 2/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA