Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 15: 1365803, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38646520

RESUMEN

Introduction: Angiotensin converting-enzyme 2 (ACE2) is an enzyme catalyzing the conversion of angiotensin 2 into angiotensin 1-7. ACE2 also serves as the receptor of several coronaviruses, including SARS-CoV-1 and SARS-CoV-2. Therefore, ACE2 could be utilized as a therapeutic target for treating these coronaviruses, ideally lacking enzymatic function. Methods: Based on structural analysis, specific mutations were introduced to generate mutants of ACE2 and ACE2-Fc (fusion protein of ACE2 and Fc region of IgG1). The enzyme activity, binding affinity, and neutralization abilities were measured. Results and discussion: As predicted, five mutants (AMI081, AMI082, AMI083, AMI084, AMI090) have completely depleted ACE2 enzymatic activities. More importantly, enzyme-linked receptor-ligand assay (ELRLA) and surface plasmon resonance (SPR) results showed that 2 mutants (AMI082, AMI090) maintained binding activity to the viral spike proteins of SARS-CoV-1 and SARS-CoV-2. In An in vitro neutralization experiment using a pseudovirus, SARS-CoV-2 S1 spike protein-packed lentivirus particles, was also performed, showing that AMI082 and AMI090 significantly reduced GFP transgene expression. Further, in vitro virulent neutralization assays using SARS-CoV-2 (strain name: USA-WA1/2020) showed that AMI082 and AMI090 had remarkable inhibitory effects, indicated by comparable IC50 to wildtype ACE2 (5.33 µg/mL). In addition to the direct administration of mutant proteins, an alternative strategy for treating COVID-19 is through AAV delivery to achieve long-lasting effects. Therefore, AAV5 encoding AMI082 and AMI090 were packaged and transgene expression was assessed. In summary, these ACE2 mutants represent a novel approach to prevent or treat COVID-19 and other viruses with the same spike protein.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Mutación , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , Humanos , SARS-CoV-2/genética , COVID-19/genética , COVID-19/virología , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Glicoproteína de la Espiga del Coronavirus/inmunología , Tratamiento Farmacológico de COVID-19 , Anticuerpos Neutralizantes/inmunología , Animales , Células HEK293 , Unión Proteica
2.
Front Med (Lausanne) ; 11: 1302648, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38318248

RESUMEN

Introduction: Recombinant adeno-associated virus (rAAV) vectors provide a safe and efficient means for in vivo gene delivery, although its large-scale production remains challenging. Featuring high manufacturing speed, flexible product design, and inherent safety and scalability, the baculovirus/Sf9 cell system offers a practical solution to the production of rAAV vectors in large quantities and high purity. Nonetheless, removal and inactivation of recombinant baculoviruses during downstream purification of rAAV vectors remain critical prior to clinical application. Methods: The present study utilized a newly developed fluorescent-TCID50 (F-TCID50) assay to determine the infectious titer of recombinant baculovirus (rBV) stock after baculovirus removal and inactivation, and to evaluate the impact of various reagents and solutions on rBV infectivity. Results and discussion: The results showed that a combination of sodium lauryl sulfate (SLS) and Triton X-100 lysis, AAVx affinity chromatography, low pH hold (pH3.0), CsCl ultracentrifugation, and NFR filtration led to effective removal and/or inactivation of recombinant baculoviruses, and achieved a log reduction value (LRV) of more than 18.9 for the entire AAV purification process. In summary, this study establishes a standard protocol for downstream baculovirus removal and inactivation and a reliable F-TCID50 assay to detect rBV infectivity, which can be widely applied in AAV manufacturing using the baculovirus system.

3.
Mol Ther ; 32(1): 74-83, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-37990495

RESUMEN

Recombinant adeno-associated virus (rAAV) vectors could be manufactured by plasmid transfection into human embryonic kidney 293 (HEK293) cells or baculovirus infection of Spodoptera frugiperda (Sf9) insect cells. However, systematic comparisons between these systems using large-scale, high-quality AAV vectors are lacking. rAAV from Sf9 cells (Sf9-rAAV) at 2-50 L and HEK293 cells (HEK-rAAV) at 2-200 L scales were characterized. HEK-rAAV had ∼40-fold lower yields but ∼10-fold more host cell DNA measured by droplet digital PCR and next-generation sequencing, respectively. The electron microscope observed a lower full/empty capsid ratio in HEK-rAAV (70.8%) than Sf9-rAAV (93.2%), while dynamic light scattering and high-performance liquid chromatography analysis showed that HEK-rAAV had more aggregation. Liquid chromatography tandem mass spectrometry identified different post-translational modification profiles between Sf9-rAAV and HEK-rAAV. Furthermore, Sf9-rAAV had a higher tissue culture infectious dose/viral genome than HEK-rAAV, indicating better infectivity. Additionally, Sf9-rAAV achieved higher in vitro transgene expression, as measured by ELISA. Finally, after intravitreal dosing into a mouse laser choroidal neovascularization model, Sf9-rAAV and HEK-rAAV achieved similar efficacy. Overall, this study detected notable differences in the physiochemical characteristics of HEK-rAAV and Sf9-rAAV. However, the in vitro and in vivo biological functions of the rAAV from these systems were highly comparable. Sf9-rAAV may be preferred over HEK293-rAAV for advantages in yields, full/empty ratio, scalability, and cost.


Asunto(s)
Vectores Genéticos , Riñón , Animales , Ratones , Humanos , Células HEK293 , Vectores Genéticos/genética , Transfección , Células Sf9 , Dependovirus/genética
4.
Biochem J ; 478(14): 2843-2869, 2021 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-34195804

RESUMEN

The interaction of insect-selective scorpion depressant ß-toxins (LqhIT2 and Lqh-dprIT3 from Leiurus quinquestriatus hebraeus) with the Blattella germanica sodium channel, BgNav1-1a, was investigated using site-directed mutagenesis, electrophysiological analyses, and structural modeling. Focusing on the pharmacologically defined binding site-4 of scorpion ß-toxins at the voltage-sensing domain II (VSD-II), we found that charge neutralization of D802 in VSD-II greatly enhanced the channel sensitivity to Lqh-dprIT3. This was consistent with the high sensitivity of the splice variant BgNav2-1, bearing G802, to Lqh-dprIT3, and low sensitivity of BgNav2-1 mutant, G802D, to the toxin. Further mutational and electrophysiological analyses revealed that the sensitivity of the WT = D802E < D802G < D802A < D802K channel mutants to Lqh-dprIT3 correlated with the depolarizing shifts of activation in toxin-free channels. However, the sensitivity of single mutants involving IIS4 basic residues (K4E = WT << R1E < R2E < R3E) or double mutants (D802K = K4E/D802K = R3E/D802K > R2E/D802K > R1E/D802K > WT) did not correlate with the activation shifts. Using the cryo-EM structure of the Periplaneta americana channel, NavPaS, as a template and the crystal structure of LqhIT2, we constructed structural models of LqhIT2 and Lqh-dprIT3-c in complex with BgNav1-1a. These models along with the mutational analysis suggest that depressant toxins approach the salt-bridge between R1 and D802 at VSD-II to form contacts with linkers IIS1-S2, IIS3-S4, IIIP5-P1 and IIIP2-S6. Elimination of this salt-bridge enables deeper penetration of the toxin into a VSD-II gorge to form new contacts with the channel, leading to increased channel sensitivity to Lqh-dprIT3.


Asunto(s)
Neoptera/metabolismo , Venenos de Escorpión/metabolismo , Escorpiones/metabolismo , Canales de Sodio/metabolismo , Animales , Sitios de Unión/genética , Activación del Canal Iónico/genética , Activación del Canal Iónico/fisiología , Potenciales de la Membrana/genética , Potenciales de la Membrana/fisiología , Modelos Moleculares , Mutación , Neoptera/genética , Oocitos/metabolismo , Oocitos/fisiología , Técnicas de Placa-Clamp/métodos , Unión Proteica , Dominios Proteicos , Mapeo de Interacción de Proteínas , Venenos de Escorpión/química , Venenos de Escorpión/genética , Escorpiones/genética , Canales de Sodio/química , Canales de Sodio/genética , Xenopus
5.
Mol Ther Methods Clin Dev ; 17: 34-48, 2020 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-31890739

RESUMEN

Adeno-associated virus (AAV) vectors have been commonly purified through density gradient ultracentrifugation (DGUC) or column chromatography methods. Although the DGUC method can efficiently separate the empty from the full virus particles, its application in large-scale AAV purification is hindered due to its limitation in volume of each centrifuge tube. Alternatively, column chromatography is serotype-dependent, expensive, and complicated, which co-purifies both empty and full virus particles. In this study, we describe an economical and universal process using three-phase partitioning (TPP) combined with DGUC to purify large quantities of AAV vectors. First, TPP is used to remove up to 90% of the cellular impurities in the cell lysate and at the same time condense the AAV vectors into ∼10% of their original lysate volume. Second, two rounds of DGUC are employed to separate the empty from the full virus particles and at the same time remove the remaining cellular impurities. This combined process increases the capacity of ultracentrifugation by a factor of 5- to 10-fold depending on the yields of AAV serotypes. A variety of AAV serotypes such as AAV2, AAV5, AAV6, AAV9, and AAVDJ have been successfully purified with this process. Both in vitro and in vivo studies demonstrate that TPP has no detrimental impact on AAV infectivity. In a proof of concept, we performed several purification runs ranging from 3 to 25 L of Sf9 culture volume. We were able to purify more than 3e+15 viral genomes (vg) of AAV vectors from 3 L of cell culture volume with just two SW28 centrifuge tubes in a Beckman Coulter ultracentrifuge. Our data indicate that this TPP-DGUC process is economic, universal, and can be used to purify a large quantity of AAV vectors for clinical applications with just a few ultracentrifuges.

6.
PLoS Genet ; 9(3): e1003327, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23505382

RESUMEN

Voltage-gated ion channels are essential for electrical signaling in neurons and other excitable cells. Among them, voltage-gated sodium and calcium channels are four-domain proteins, and ion selectivity is strongly influenced by a ring of amino acids in the pore regions of these channels. Sodium channels contain a DEKA motif (i.e., amino acids D, E, K, and A at the pore positions of domains I, II, III, and IV, respectively), whereas voltage-gated calcium channels contain an EEEE motif (i.e., acidic residues, E, at all four positions). Recently, a novel family of ion channel proteins that contain an intermediate DEEA motif has been found in a variety of invertebrate species. However, the physiological role of this new family of ion channels in animal biology remains elusive. DSC1 in Drosophila melanogaster is a prototype of this new family of ion channels. In this study, we generated two DSC1 knockout lines using ends-out gene targeting via homologous recombination. DSC1 mutant flies exhibited impaired olfaction and a distinct jumpy phenotype that is intensified by heat shock and starvation. Electrophysiological analysis of the giant fiber system (GFS), a well-defined central neural circuit, revealed that DSC1 mutants are altered in the activities of the GFS, including the ability of the GFS to follow repetitive stimulation (i.e., following ability) and response to heat shock, starvation, and pyrethroid insecticides. These results reveal an important role of the DSC1 channel in modulating the stability of neural circuits, particularly under environmental stresses, likely by maintaining the sustainability of synaptic transmission.


Asunto(s)
Canales de Calcio/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Canales de Sodio Activados por Voltaje , Animales , Canales de Calcio/metabolismo , Canales de Calcio/fisiología , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/fisiología , Técnicas de Inactivación de Genes , Recombinación Homóloga , Fenómenos Fisiológicos del Sistema Nervioso , Estrés Fisiológico , Transmisión Sináptica/fisiología , Canales de Sodio Activados por Voltaje/genética , Canales de Sodio Activados por Voltaje/metabolismo , Canales de Sodio Activados por Voltaje/fisiología
7.
J Biol Chem ; 286(18): 15781-8, 2011 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-21454658

RESUMEN

Scorpion ß-toxins bind to the extracellular regions of the voltage-sensing module of domain II and to the pore module of domain III in voltage-gated sodium channels and enhance channel activation by trapping and stabilizing the voltage sensor of domain II in its activated state. We investigated the interaction of a highly potent insect-selective scorpion depressant ß-toxin, Lqh-dprIT(3), from Leiurus quinquestriatus hebraeus with insect sodium channels from Blattella germanica (BgNa(v)). Like other scorpion ß-toxins, Lqh-dprIT(3) shifts the voltage dependence of activation of BgNa(v) channels expressed in Xenopus oocytes to more negative membrane potentials but only after strong depolarizing prepulses. Notably, among 10 BgNa(v) splice variants tested for their sensitivity to the toxin, only BgNa(v)1-1 was hypersensitive due to an L1285P substitution in IIIS1 resulting from a U-to-C RNA-editing event. Furthermore, charge reversal of a negatively charged residue (E1290K) at the extracellular end of IIIS1 and the two innermost positively charged residues (R4E and R5E) in IIIS4 also increased the channel sensitivity to Lqh-dprIT(3). Besides enhancement of toxin sensitivity, the R4E substitution caused an additional 20-mV negative shift in the voltage dependence of activation of toxin-modified channels, inducing a unique toxin-modified state. Our findings provide the first direct evidence for the involvement of the domain III voltage-sensing module in the action of scorpion ß-toxins. This hypersensitivity most likely reflects an increase in IIS4 trapping via allosteric mechanisms, suggesting coupling between the voltage sensors in neighboring domains during channel activation.


Asunto(s)
Blattellidae/metabolismo , Proteínas de Insectos/metabolismo , Activación del Canal Iónico/efectos de los fármacos , Venenos de Escorpión/farmacología , Canales de Sodio/metabolismo , Regulación Alostérica/efectos de los fármacos , Regulación Alostérica/fisiología , Empalme Alternativo/fisiología , Sustitución de Aminoácidos , Animales , Blattellidae/química , Blattellidae/genética , Expresión Génica , Proteínas de Insectos/química , Proteínas de Insectos/genética , Mutación Missense , Estructura Terciaria de Proteína , Venenos de Escorpión/química , Escorpiones/química , Canales de Sodio/química , Canales de Sodio/genética , Xenopus
8.
Toxicol Appl Pharmacol ; 247(1): 53-9, 2010 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-20561903

RESUMEN

Voltage-gated sodium channels are the primary target of pyrethroids, an important class of synthetic insecticides. Pyrethroids bind to a distinct receptor site on sodium channels and prolong the open state by inhibiting channel deactivation and inactivation. Recent studies have begun to reveal sodium channel residues important for pyrethroid binding. However, how pyrethroid binding leads to inhibition of sodium channel deactivation and inactivation remains elusive. In this study, we show that a negatively charged aspartic acid residue at position 802 (D802) located in the extracellular end of transmembrane segment 1 of domain II (IIS1) is critical for both the action of pyrethroids and the voltage dependence of channel activation. Charge-reversing or -neutralizing substitutions (K, G, or A) of D802 shifted the voltage dependence of activation in the depolarizing direction and reduced channel sensitivity to deltamethrin, a pyrethroid insecticide. The charge-reversing mutation D802K also accelerated open-state deactivation, which may have counteracted the inhibition of sodium channel deactivation by deltamethrin. In contrast, the D802G substitution slowed open-state deactivation, suggesting an additional mechanism for neutralizing the action of deltamethrin. Importantly, Schild analysis showed that D802 is not involved in pyrethroid binding. Thus, we have identified a sodium channel residue that is critical for regulating the action of pyrethroids on the sodium channel without affecting the receptor site of pyrethroids.


Asunto(s)
Cucarachas/efectos de los fármacos , Insecticidas/toxicidad , Activación del Canal Iónico/efectos de los fármacos , Piretrinas/toxicidad , Canales de Sodio/química , Sustitución de Aminoácidos , Animales , Ácido Aspártico/metabolismo , Cucarachas/metabolismo , Potenciales de la Membrana/efectos de los fármacos , Nitrilos/toxicidad , Estructura Terciaria de Proteína , Canales de Sodio/efectos de los fármacos , Canales de Sodio/metabolismo
9.
Curr Biol ; 20(11): 1006-11, 2010 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-20471266

RESUMEN

Balancing intake of diverse nutrients is important for organismal growth, reproduction, and survival. A shift in an organism's optimal diet due to changes in nutritional requirements after developmental or environmental changes is referred to as dietary switch and has been observed in several species. Here we demonstrate that female Drosophila melanogaster also undergo a dietary switch following mating that leads to an increased preference for yeast, the major source of protein in their diet. We also demonstrate that S6 kinase (S6K) and serotonin production are involved in the postmating dietary switch. To further investigate the ability of D. melanogaster to balance nutrient intake, we examined the dietary preferences of adult flies following deprivation of yeast or sucrose. We observe that following conditioning on a diet deficient in either carbohydrates or yeast, D. melanogaster show a strong preference for the deficient nutrient. Furthermore, flies with activated dS6K or flies fed a serotonin precursor exhibit enhanced preference for yeast in this assay. Our results suggest that TOR signaling and serotonin may play an important role in maintaining nutrient balance in D. melanogaster. These studies may contribute to our understanding of metabolic disorders such as obesity and diabetes.


Asunto(s)
Dieta , Drosophila melanogaster/fisiología , Conducta Alimentaria/fisiología , Preferencias Alimentarias/fisiología , Proteínas Quinasas S6 Ribosómicas/metabolismo , Serotonina/metabolismo , Conducta Sexual Animal/fisiología , Animales , Femenino , Masculino , Necesidades Nutricionales
10.
Toxicol Appl Pharmacol ; 234(2): 266-72, 2009 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-19022275

RESUMEN

Pyrethroid insecticides are classified as type I or type II based on their distinct symptomology and effects on sodium channel gating. Structurally, type II pyrethroids possess an alpha-cyano group at the phenylbenzyl alcohol position, which is lacking in type I pyrethroids. Both type I and type II pyrethroids inhibit deactivation consequently prolonging the opening of sodium channels. However, type II pyrethroids inhibit the deactivation of sodium channels to a greater extent than type I pyrethroids inducing much slower decaying of tail currents upon repolarization. The molecular basis of a type II-specific action, however, is not known. Here we report the identification of a residue G(1111) and two positively charged lysines immediately downstream of G(1111) in the intracellular linker connecting domains II and III of the cockroach sodium channel that are specifically involved in the action of type II pyrethroids, but not in the action of type I pyrethroids. Deletion of G(1111), a consequence of alternative splicing, reduced the sodium channel sensitivity to type II pyrethroids, but had no effect on channel sensitivity to type I pyrethroids. Interestingly, charge neutralization or charge reversal of two positively charged lysines (Ks) downstream of G(1111) had a similar effect. These results provide the molecular insight into the type II-specific interaction of pyrethroids with the sodium channel at the molecular level.


Asunto(s)
Cucarachas/genética , Cucarachas/metabolismo , Insecticidas/toxicidad , Piretrinas/toxicidad , Bloqueadores de los Canales de Sodio/toxicidad , Canales de Sodio/efectos de los fármacos , Canales de Sodio/genética , Secuencia de Aminoácidos , Animales , ADN/genética , Activación del Canal Iónico/efectos de los fármacos , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Nitrilos/toxicidad , Oocitos/metabolismo , ARN Complementario/biosíntesis , ARN Complementario/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
11.
Biochim Biophys Acta ; 1757(9-10): 1190-8, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16806050

RESUMEN

Human mitochondrial diseases are associated with a wide range of clinical symptoms, and those that result from mutations in mitochondrial DNA affect at least 1 in 8500 individuals. The development of animal models that reproduce the variety of symptoms associated with this group of complex human disorders is a major focus of current research. Drosophila represents an attractive model, in large part because of its short life cycle, the availability of a number of powerful techniques to alter gene structure and regulation, and the presence of orthologs of many human disease genes. We describe here Drosophila models of mitochondrial DNA depletion, deafness, encephalopathy, Freidreich's ataxia, and diseases due to mitochondrial DNA mutations. We also describe several genetic approaches for gene manipulation in flies, including the recently developed method of targeted mutagenesis by recombinational knock-in.


Asunto(s)
Dípteros/genética , Enfermedades Mitocondriales/genética , Animales , ADN Polimerasa gamma , ADN Polimerasa Dirigida por ADN/genética , Modelos Animales de Enfermedad , Marcación de Gen , Humanos
12.
Hum Mol Genet ; 14(14): 1907-20, 2005 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-15917273

RESUMEN

Defects of mitochondrial polymerase gamma (POLG) underlie neurological diseases ranging from myopathies to parkinsonism and infantile Alpers syndrome. The most severe manifestations have been associated with mutations of the 'spacer' region of POLG, the function of which has remained unstudied in humans. We identified a family, segregating three POLG amino acid variants, A467T, R627Q and Q1236H. The first two affect the spacer region and the third is a polymorphism, allelic with R627Q. Three grades of disease severity appeared to correlate with the genotypes. The patient with the most severe outcome, cerebellar ataxia syndrome, had all three variants, those with R627Q and Q1236H had juvenile-onset ptosis and gait disturbance and those with a single A467T allele had late-onset ptosis. To evaluate the molecular pathogenesis of these spacer defects, we expressed and purified the mutant proteins and studied their catalytic properties in vitro. The A467T substitution resulted in clearly decreased activity, DNA binding and processivity of the polymerase. Our biochemical data, the dominant manifestation of A467T and its previously reported high frequency in the Belgian population (0.6%), emphasize the role of this mutation as a common cause of neurological disease. Further, biochemical evidence that a polymorphic variant may modify the function of a mutant POLG, if occurring in the same polypeptide, is shown here. Finally, and surprisingly, other pathogenic spacer mutants showed DNA-binding affinities and processivities similar to or higher than the controls, suggesting that the disease-causing mechanisms of spacer mutations extend beyond the basic catalytic functions of POLG.


Asunto(s)
Ataxia/genética , ADN Polimerasa Dirigida por ADN/genética , Mitocondrias/enzimología , Enfermedades Musculares/genética , Mutación , Adulto , Anciano , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Cartilla de ADN , Electroforesis en Gel de Poliacrilamida , Femenino , Humanos , Masculino , Microscopía Electrónica , Persona de Mediana Edad , Mitocondrias/ultraestructura , Datos de Secuencia Molecular , Linaje , Homología de Secuencia de Aminoácido , Síndrome
13.
J Biol Chem ; 280(4): 2491-7, 2005 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-15537632

RESUMEN

The catalytic subunit (alpha) of mitochondrial DNA polymerase (pol gamma) shares conserved DNA polymerase and 3'-5' exonuclease active site motifs with Escherichia coli DNA polymerase I and bacteriophage T7 DNA polymerase. A major difference between the prokaryotic and mitochondrial proteins is the size and sequence of the region between the exonuclease and DNA polymerase domains, referred to as the spacer in pol gamma-alpha. Four gamma-specific conserved sequence elements are located within the spacer region of the catalytic subunit in eukaryotic species from yeast to humans. To elucidate the functional roles of the spacer region, we pursued deletion and site-directed mutagenesis of Drosophila pol gamma. Mutant proteins were expressed from baculovirus constructs in insect cells, purified to near homogeneity, and analyzed biochemically. We find that mutations in three of the four conserved sequence elements within the spacer alter enzyme activity, processivity, and/or DNA binding affinity. In addition, several mutations affect differentially DNA polymerase and exonuclease activity and/or functional interactions with mitochondrial single-stranded DNA-binding protein. Based on these results and crystallographic evidence showing that the template-primer binds in a cleft between the exonuclease and DNA polymerase domains in family A DNA polymerases, we propose that conserved sequences within the spacer of pol gamma may position the substrate with respect to the enzyme catalytic domains.


Asunto(s)
ADN Intergénico , ADN Mitocondrial/metabolismo , ADN Polimerasa Dirigida por ADN/genética , Drosophila/genética , Mutación , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Baculoviridae/genética , Baculoviridae/metabolismo , Sitios de Unión , Dominio Catalítico , Línea Celular , Citoplasma/metabolismo , ADN/metabolismo , ADN Polimerasa gamma , Cartilla de ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Escherichia coli/enzimología , Escherichia coli/metabolismo , Vectores Genéticos , Insectos , Datos de Secuencia Molecular , Unión Proteica , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido
14.
J Biol Chem ; 279(17): 17047-53, 2004 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-14754882

RESUMEN

Functional interactions between mitochondrial DNA polymerase (pol gamma) and mitochondrial single-stranded DNA-binding protein (mtSSB) from Drosophila embryos greatly enhance the overall activity of pol gamma by increasing primer recognition and binding and stimulating the rate of initiation of DNA strands (Farr, C. L., Wang, Y., and Kaguni, L. S. (1999) J. Biol. Chem. 274, 14779-14785). We show here that DNA-binding mutants of mtSSB are defective in stimulation of DNA synthesis by pol gamma. RNAi knock-down of mtSSB reduces expression to <5% of its normal level in Schneider cells, resulting in growth defects and in the depletion of mitochondrial DNA (mtDNA). Overexpression of mtSSB restores cell growth rate and the copy number of mtDNA, whereas overexpression of a DNA-binding and functionally impaired form of mtSSB neither rescues the cell growth defect nor the mtDNA depletion phenotype. Further development of Drosophila animal models, in which induced mtDNA depletion is manipulated by controlling exogenous expression of wild-type or mutant forms, will offer new insight into the mechanism and progression of human mtDNA depletion syndromes and possible intervention schemes.


Asunto(s)
Proteínas de Unión al ADN/genética , ADN Polimerasa Dirigida por ADN/química , Mitocondrias/enzimología , Mutación , Regiones no Traducidas 3' , Secuencia de Aminoácidos , Animales , Southern Blotting , Línea Celular , ADN/química , ADN Polimerasa gamma , Relación Dosis-Respuesta a Droga , Drosophila , Electroforesis en Gel de Poliacrilamida , Immunoblotting , Mitocondrias/metabolismo , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Fenotipo , Plásmidos/metabolismo , Interferencia de ARN , Proteínas Recombinantes/metabolismo , Factores de Tiempo
15.
Proc Natl Acad Sci U S A ; 99(7): 4483-8, 2002 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-11917141

RESUMEN

DNA polymerase gamma, Pol gamma, is the key replicative enzyme in animal mitochondria. The Drosophila enzyme is a heterodimer comprising catalytic and accessory subunits of 125 kDa and 35 kDa, respectively. Both subunits have been cloned and characterized in a variety of model systems, and genetic mutants of the catalytic subunit were first identified in Drosophila, as chemically induced mutations that disrupt larval behavior (tamas). Mutations in the gene encoding the accessory subunit have not yet been described in any organism. Here, we report the consequences of null mutations upon mitochondrial DNA (mtDNA) replication and morphology, cell proliferation, and organismal viability. Mutations in the accessory subunit cause lethality during early pupation, concomitant with loss of mtDNA and mitochondrial mass, and reduced cell proliferation in the central nervous system. Surprisingly, the function of the central nervous system and muscle, as assessed in a locomotion assay, are only marginally affected. This finding is in contrast to our previous findings that disruption in the function of the catalytic subunit causes severe reduction in larval locomotion. We discuss our results in the context of current hypotheses for the function of the accessory subunit in mtDNA replication.


Asunto(s)
ADN Mitocondrial/genética , ADN Polimerasa Dirigida por ADN/fisiología , Drosophila melanogaster/genética , Mitocondrias/patología , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Secuencia de Bases , División Celular , ADN Polimerasa gamma , Replicación del ADN , ADN Mitocondrial/química , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/genética , Drosophila melanogaster/fisiología , Larva/fisiología , Datos de Secuencia Molecular , Subunidades de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...