Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Insect Sci ; 2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37650774

RESUMEN

Insecticide resistance in Panonychus citri is a major obstacle to mite control in citrus orchards. Pyrethroid insecticides are continually used to control mites in China, although resistance to pyrethroids has evolved in some populations. Here, the resistance to the pyrethroid fenpropathrin was investigated and 7 out of 8 field-collected populations of P. citri exhibited a high level of resistance, ranging from 171-fold to 15 391-fold higher than the susceptible (SS) comparison strain. Three voltage-gated sodium channel (VGSC) mutations were identified in the tested populations: L1031V, F1747L, and F1751I. Amplicon sequencing was used to evaluate the frequency of these mutations in the 19 field populations. L1031V and F1751I were present in all populations at frequencies of 11.6%-82.1% and 0.5%-31.8%, respectively, whereas the F1747L mutation was only present in 12 populations from Chongqing, Sichuan, Guangxi, and Yunnan provinces. Introduction of these mutations singly or in combination into transgenic flies significantly increased their resistance to fenpropathrin and these flies also exhibited reduced mortality after exposure to the pyrethroids permethrin and ß-cypermethrin. Panonychus citri VGSC homology modeling and ligand docking indicate that F1747 and F1751 form direct binding contacts with pyrethroids, which are lost with mutation, whereas L1031 mutation may diminish pyrethroid effects through an allosteric mechanism. Overall, the results provide molecular markers for monitoring pest resistance to pyrethroids and offer new insights into the basis of pyrethroid actions on sodium channels.

2.
Pest Manag Sci ; 79(9): 3250-3261, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37071486

RESUMEN

BACKGROUND: Panonychus citri is a globally dominant citrus plant pest mite. Pesticide-induced population resurgence is a concern for mite control. Exposure to sublethal concentrations of pesticides has stimulated reproduction and outbreak risks in many pests. Pyridaben, a mitochondrial electron transport inhibitor, has been frequently used worldwide in mite control. In the study, sublethal and transgenerational effects of pyridaben exposure on Pyr_Rs (resistant) and Pyr_Control (susceptible) strains were systematically investigated in both exposed parental generation (F0 ) and unexposed offspring generations (F1 and F2 ) by evaluating life-table and physiological parameters. RESULTS: After exposure to pyridaben, the fecundity of both strains was significantly reduced in F0 generation while significantly induced in F1 generation. Interestingly, these effects also stimulated the fecundity of the F2 generation in Pyr_Control strain while no significant effects occurred for Pyr_Rs strain. The intrinsic rate of increase (r) and finite rate of increase (λ) were significantly decreased only in F1 generation of Pyr_Control strain after exposure treatment. Meanwhile, the population projection indicated a smaller population size in F1 generation of Pyr_Control strain while a population increase for Pyr_Rs strain after sublethal treatment. Subsequent detoxification enzyme assays indicated that only P450 activities in F0 generation were significantly activated by LC30 exposure to pyridaben in both strains. Significant downregulation of reproduction-related (Pc_Vg) genes was observed in the F0 generations of both strains. Significant upregulation of P450 (CYP4CL2) and Pc_Vg of the F1 generation in both strains suggested the presence of delayed hormesis effects on the reproduction and developed tolerance to pyridaben, although the effects did not last over a longer period (F2 generation). CONCLUSION: These results provide evidence for transgenerational hormesis effects of low concentrations of pyridaben exposure that may lead to population increase and resurgence risks of resistant-mites in natural settings by stimulating reproduction. © 2023 Society of Chemical Industry.


Asunto(s)
Ácaros , Plaguicidas , Tetranychidae , Animales , Reproducción , Tetranychidae/genética , Fertilidad , Plaguicidas/farmacología , Expresión Génica
3.
Pest Manag Sci ; 79(3): 996-1004, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36318043

RESUMEN

BACKGROUND: Panonychus citri is a major citrus pest worldwide. The short life cycle and high reproductive potential of P. citri, combined with heavy acaricide use, have led to high levels of resistance to acaricides, posing a threat to global resistance management programs. Here, resistance monitoring was established to determine the pyridaben resistance status of ten P. citri populations in China from 2014 to 2021 using a leaf-dipping assay. Four characterized strains-the susceptible strain (Lab_S), the resistant strain (Pyr_R), as well as the segregated resistant strain (Pyr_Rs) and the segregated susceptible strain (Pyr_Control) derived from the crossing of the Lab_S and Pyr_R strains, were used to evaluate the life-history characteristics using age-stage, two-sex life tables. RESULTS: Most P. citri populations developed high resistance to pyridaben. Resistance levels exceeded 1000-fold in Yuxi, Anyue, Nanning, and Ganzhou populations compared with the Lab_S strain. Compared with Pyr_Control, two key fitness cost criteria, developmental period and fecundity, showed significant differences in Pyr_Rs under consistent conditions. The intrinsic rate of increase, net reproductive rate and gross reproductive rate were lower in the resistant strain compared with the Pyr_Control strain. The Pyr_Rs strain had a lower relative fitness of 0.934 compared with the Pyr_Control. Moreover, the life-history traits and population parameters of the Pyr_R strain also showed significant differences compared with the Lab_S strain. CONCLUSION: The resistance levels to pyridaben varied greatly among the different P. citri populations and showed regional differences. Substantial fitness costs are associated with pyridaben resistance. This study provides potential implications for developing strategies for resistance management in P. citri. © 2022 Society of Chemical Industry.


Asunto(s)
Acaricidas , Piridazinas , Tetranychidae , Animales , Acaricidas/farmacología , China
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...