Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Mol Reprod Dev ; 91(1): e23724, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38282318

RESUMEN

Pre-eclampsia (PE) is a dangerous pathological status that occurs during pregnancy and is a leading reason for both maternal and fetal death. Autophagy is necessary for cellular survival in the face of environmental stress as well as cellular homeostasis and energy management. Aberrant microRNA (miRNA) expression is crucial in the pathophysiology of PE. Although studies have shown that miRNA (miR)-190a-3p function is tissue-specific, the precise involvement of miR-190a-3p in PE has yet to be determined. We discovered that miR-190a-3p was significantly lower and death-associated protein kinase 1 (DAPK1) was significantly higher in PE placental tissues compared to normal tissues, which is consistent with the results in cells. The luciferase analyses demonstrated the target-regulatory relationship between miR-190a-3p and DAPK1. The inhibitory effect of miR-190a-3p on autophagy was reversed by co-transfection of si-DAPK1 and miR-190a-3p inhibitors. Thus, our data indicate that the hypoxia-dependent miR-190a-3p/DAPK1 regulatory pathway is implicated in the development and progression of PE by promoting autophagy in trophoblast cells.


Asunto(s)
Proteínas Quinasas Asociadas a Muerte Celular , MicroARNs , Preeclampsia , Femenino , Humanos , Embarazo , Autofagia/genética , Movimiento Celular , Proliferación Celular , Proteínas Quinasas Asociadas a Muerte Celular/genética , Proteínas Quinasas Asociadas a Muerte Celular/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Placenta/metabolismo , Preeclampsia/metabolismo , Trofoblastos/metabolismo
2.
Aging (Albany NY) ; 15(23): 13822-13839, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38048229

RESUMEN

Preeclampsia (PE) is a pregnancy-specific cardiovascular complication that is the leading cause of maternal and neonatal morbidity and mortality. Previous studies have indicated the importance of immune cells, such as M1 and M2 macrophages, in the pathogenesis of PE. However, the mechanisms leading to immune dysregulation are unclear. Data-independent acquisition proteomic analysis was performed on placental tissues collected from patients with PE and healthy controls. Transcriptome data for placenta samples from patients with PE and their corresponding controls were obtained from the Gene Expression Omnibus database. Differential analysis of transcriptome and proteome data between PE and control groups was performed using R software. Immunocytic infiltration scoring was performed using the quantiseq algorithm. Weighted gene co-expression network analysis (WGCNA) screened for feature genes associated with M1 cell infiltration. Protein-protein interaction (PPI) analysis identified hub genes. We confirm that the infiltration score of M1 macrophages was significantly increased in the placental tissues of patients with PE. Differential analysis, WGCNA, and PPI analysis identified four hub molecules associated with M1 cell infiltration (HTRA4, POGK, MFAP5, and INHBA). The hub molecules displayed dysregulated expression in PE tissues. The qPCR, Western blots, and immunohistochemistry analyses confirmed that Inhibin, beta A (INHBA) was highly expressed in placental tissues of patients with PE. Immunofluorescence revealed the extensive infiltration of M1 macrophages in the placental tissues of patients with PE and their co-localization with INHBA. The collective results identified hub genes associated with M1 macrophage infiltration, providing potential targets for the pathogenesis and treatment of PE.


Asunto(s)
Preeclampsia , Femenino , Embarazo , Humanos , Preeclampsia/genética , Proteómica , Placenta , Macrófagos , Algoritmos
3.
Biomedicines ; 11(6)2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37371830

RESUMEN

As a chronic progressive inflammatory disease, atherosclerosis constitutes a leading cause of cardiovascular disease, with high mortality and morbidity worldwide. The effect of lncRNA AC078850.1 in atherosclerosis is unknown; this study aims to explore the regulatory mechanism of the lncRNA AC078850.1/HIF-1α complex in atherosclerosis. Initially, we identified the lncRNA AC078850.1 associated with atherosclerosis using multiple bioinformatic methods, finding that the level of lncRNA AC078850.1 in peripheral blood mononuclear cells was positively related to the severity of carotid atherosclerosis. LncRNA AC078850.1 was upregulated, and found to be predominately localized in the nucleus of THP-1 macrophage-derived foam cells. Both the knockdown of lncRNA AC078850.1 and the transcription factor HIF-1α can each markedly suppress ITGB2 gene transcription, ROS production, NLRP3 inflammasome, IL-1ß/18 release, lipid accumulation, and pyroptotic cell death in ox-LDL-stimulated THP-1-derived macrophages. Additionally, the downregulation of HIF-1α attenuated the positive effects of lncRNA AC078850.1 on pyroptosis and foam cell formation. In addition, the knockdown of lncRNA AC078850.1 suppressed HIF-1α-aggravated macrophages pyroptosis and foam cell formation. Meanwhile, inhibition of ITGB2 gene expression ameliorated HIF-1α-aggravated ROS generation in THP-1-derived macrophages. Taken together, our study demonstrated that lncRNA AC078850.1 was involved in the regulation of ITGB2 gene transcription by binding to the HIF-1α and lncRNA AC078850.1/HIF-1α complex, promoting both NLRP3 inflammasome-mediated pyroptosis and foam cell formation through the ROS-dependent pathway in cases of atherosclerosis.

4.
Reprod Biol ; 23(1): 100712, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36427432

RESUMEN

Preeclampsia (PE) is a pregnancy-specific disorder and a significant contributor to maternal, fetal and neonatal morbidity and mortality worldwide. Its pathogenesis is generally accepted as insufficient trophoblast invasion of the maternal endometrium and inadequate remodeling of the maternal spiral arteries. These impairments lead to elevated levels of hypoxia and oxidative stress. Autophagy has become a highly researched field in obstetrics, and this process may be essential for preimplantation development beyond the four- and eight-cell stages, and for blastocyst survival, extra-villous trophoblast functions, invasion and vascular remodeling. Several studies have shown that autophagy activation, shown by an increase in autophagy vacuoles or microtubule-associated protein 1 A/1B-light chain 3 (LC3) dots, was more common in PE than in normal pregnancy. Thus, changes in autophagic status are seen in preeclamptic placentas. MicroRNA-141-3p (miR-141-3p), a multifunctional miRNA, is involved in a variety of physiological and pathological processes, including PE and autophagy. However, the influence of miR-141-3p on autophagy regulation in trophoblast cells has yet to be described. Therefore, the objective of our study was to investigate the role of miR-141-3p in autophagy induced by hypoxia in human placental trophoblast cells. Our results found that hypoxia induced autophagy in trophoblast cells and dramatically elevated the expression of miR-141-3p. Overexpression of miR-141-3p improved autophagic activity, whereas low expression of miR-141-3p inhibited autophagic activity. Therefore, our data demonstrated that miR-141-3p promoted hypoxia-induced autophagy in placental trophoblast cells, which may be related to the development of preeclampsia.


Asunto(s)
MicroARNs , Preeclampsia , Trofoblastos , Femenino , Humanos , Recién Nacido , Embarazo , Autofagia , Línea Celular , Movimiento Celular , Proliferación Celular , Hipoxia/metabolismo , MicroARNs/genética , Placenta/metabolismo , Preeclampsia/metabolismo , Trofoblastos/metabolismo
5.
Front Aging Neurosci ; 14: 919614, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35966794

RESUMEN

Objective: As a chronic neurodegenerative disorder, Alzheimer's disease (AD) is the most common form of progressive dementia. The purpose of this study was to identify diagnostic signatures of AD and the effect of immune cell infiltration in this pathology. Methods: The expression profiles of GSE109887, GSE122063, GSE28146, and GSE1297 were downloaded from the Gene Expression Omnibus (GEO) database to obtain differentially expressed genes (DEGs) between AD and control brain samples. Functional enrichment analysis was performed to reveal AD-associated biological functions and key pathways. Besides, we applied the Least Absolute Shrinkage Selection Operator (LASSO) and support vector machine-recursive feature elimination (SVM-RFE) analysis to screen potential diagnostic feature genes in AD, which were further tested in AD brains of the validation cohort (GSE5281). The discriminatory ability was then assessed by the area under the receiver operating characteristic curves (AUC). Finally, the CIBERSORT algorithm and immune cell infiltration analysis were employed to assess the inflammatory state of AD. Results: A total of 49 DEGs were identified. The functional enrichment analysis revealed that leukocyte transendothelial migration, cytokine receptor interaction, and JAK-STAT signaling pathway were enriched in the AD group. MAF basic leucine zipper transcription factor F (MAFF), ADCYAP1, and ZFP36L1 were identified as the diagnostic biomarkers of AD with high discriminatory ability (AUC = 0.850) and validated in AD brains (AUC = 0.935). As indicated from the immune cell infiltration analysis, naive B cells, plasma cells, activated/resting NK cells, M0 macrophages, M1 macrophages, resting CD4+ T memory cells, resting mast cells, memory B cells, and resting/activated dendritic cells may participate in the development of AD. Additionally, all diagnostic signatures presented different degrees of correlation with different infiltrating immune cells. Conclusion: MAFF, ADCYAP1, and ZFP36L1 may become new candidate biomarkers of AD, which were closely related to the pathogenesis of AD. Moreover, the immune cells mentioned above may play crucial roles in disease occurrence and progression.

6.
Cell Signal ; 95: 110354, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35550172

RESUMEN

Cancer is caused by the abnormal proliferation of local tissue cells under the control of many oncogenic factors. MicroRNAs (miRNAs) are a class of evolutionarily conserved, approximately 22-nucleotide noncoding small RNAs that influence transcriptional regulationby binding to the 3'-untranslated region of target messenger RNA. As a member of the miRNA family, miR-141 acts as a suppressor or an oncomiR in various cancers and regulates cancer cell proliferation, apoptosis, invasion, and metastasis through a variety of signaling pathways, such as phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT) and constitutive activation of nuclear factor-κB (NF-κB). Target gene validation and pathway analysis have provided mechanistic insight into the role of this miRNA in different tissues. This review also outlines novel findings that suggest miR-141 may be useful as a noninvasive biomarker and as a therapeutic target in several cancers.


Asunto(s)
MicroARNs , Neoplasias , Regiones no Traducidas 3' , Apoptosis , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Humanos , MicroARNs/genética , MicroARNs/metabolismo , FN-kappa B/metabolismo , Neoplasias/genética
7.
Histochem Cell Biol ; 158(1): 65-78, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35486179

RESUMEN

A few long noncoding RNAs (long ncRNAs, lncRNAs) exhibit trophoblast cell type-specific expression patterns and functional roles in mouse placenta. However, the cell- and stage-specific expression patterns and functions of most placenta-derived lncRNAs remain unclear. In this study, we explored mouse placenta-associated lncRNAs using a combined bioinformatic and experimental approach. We used the FANTOM5 database to survey lncRNA expression in mouse placenta and found that 1600012P17Rik (MGI: 1919275, designated P17Rik), a long intergenic ncRNA, was the most highly expressed lncRNA at gestational day 17. Polymerase chain reaction analysis confirmed that P17Rik was exclusively expressed in placenta and not in any of the adult organs examined in this study. In situ hybridization analysis revealed that it was highly expressed in spongiotrophoblast cells and to a lesser extent in glycogen trophoblast cells, including migratory glycogen trophoblast cells invading the decidua. Moreover, we found that it is a polyadenylated lncRNA localized mainly to the cytoplasm of these trophoblast cells. As these trophoblast cells also expressed the neighboring protein-coding gene, pappalysin 2 (Pappa2), we investigated the effects of P17Rik on Pappa2 expression using Pappa2-expressing MC3T3-E1 cells and found that P17Rik transfection increased the messenger RNA (mRNA) and protein levels of Pappa2. These results indicate that mouse placenta-specific lncRNA P17Rik modulates the expression of the neighboring protein-coding gene Pappa2 in spongiotrophoblast and glycogen trophoblast cells of mouse placenta during late gestation.


Asunto(s)
ARN Largo no Codificante , Trofoblastos , Animales , Femenino , Glucógeno/metabolismo , Hibridación in Situ , Ratones , Embarazo , Proteína Plasmática A Asociada al Embarazo/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , ARN Mensajero/metabolismo , Trofoblastos/metabolismo
8.
Gene ; 729: 144319, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-31884108

RESUMEN

In previous study, we have found that microRNA-23a is down regulated in atherosclerotic tissues. Here we demonstrate that miR-23a directly binds to 3'UTR of HSP90 mRNA to suppress the expression of HSP90. To investigate the potential roles of miR-23a in macrophage, THP-1 macrophages were transfected with miR-23a mimics or inhibitors. Our results showed inflammatory factors IL-6 and MCP-1 concentrations in cell culture medium of macrophage and foam cell transfected with miR-23a mimics were decreased. Furthermore, we find that apoptosis of macrophage and foam cells transfected with miR-23a mimics were inhibited. Over expression of miR-23a in foam cells could reduced lipid intake and accumulation in foam cells. Meanwhile, we found that in inflammatory macrophages and foam cells transfected with miR-23a mimcs, HSP90 and NF-κB proteins are significantly decreased. Our results have suggested a promising and potential therapeutic target for atherosclerosis.


Asunto(s)
Aterosclerosis/genética , Aterosclerosis/patología , Células Espumosas/patología , Proteínas HSP90 de Choque Térmico/genética , Macrófagos/patología , MicroARNs/genética , Regiones no Traducidas 3' , Apoptosis/genética , Aterosclerosis/metabolismo , Proliferación Celular/genética , Células Espumosas/metabolismo , Humanos , Inflamación/genética , Macrófagos/metabolismo , MicroARNs/metabolismo , FN-kappa B/metabolismo , Células THP-1
9.
Immun Ageing ; 12: 17, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26451160

RESUMEN

BACKGROUND: Ageing brings about the gradual deterioration of the immune system, also known as immunosenescence. The role of non-coding circular RNA in immunosenescence is under studied. Using circular RNA microarray data, we assembled Comparison groups (C1, C2, C3 and C4) that allowed us to compare the circular RNA expression profiles between CD28(+)CD8(+) T cells and CD28(-)CD8(+) T cells isolated from healthy elderly or adult control subjects. Using a step-wise biomathematical strategy, the differentially-expressed circRNAs were identified in C1 (CD28(+)CD8(+) vs CD28(-)CD8(+)T cells in the elderly) and C4 (CD28(-)CD8(+)T cells in the elderly vs in the adult), and the commonly-expressed circRNA species from these profiles were optimized as immunosenescence biomarkers. RESULTS: Four overlapping upregulated circular RNAs (100550, 100783, 101328 and 102592) expressed in cross-comparison between C1 and C4 were validated using quantitative polymerase chain reaction. Of these, only circular RNA100783 exhibited significant validation. None of the down-regulated circular RNAs were expressed in the C1 and the C4 cross-comparisons. Therefore, we further predicted circular RNA100783-targeted miRNA-gene interactions using online DAVID annotation. The analysis revealed that a circular RNA100783-targeted miRNA-mRNA network may be involved in alternative splicing, the production of splice variants, and in the regulation of phosphoprotein expression. Considering the hypothesis of splicing-related biogenesis of circRNAs, we propose that circular RNA100783 may play a role in phosphoprotein-associated functions duringCD28-related CD8(+) T cell ageing. CONCLUSIONS: This study is the first to employ circular RNA profiling to investigate circular RNA-micro RNA interactions in ageing human CD8(+)T cell populations and the accompanying loss of CD28 expression. The overlapping expression of circular RNA100783 may represent a novel biomarker for the longitudinal tracking ofCD28-related CD8(+) T cell ageing and global immunosenescence.

10.
J Mol Med (Berl) ; 93(12): 1381-90, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26208504

RESUMEN

UNLABELLED: Coronary artery disease (CAD) is the most common type of heart disease. However, the molecular mechanisms of CAD remain elusive. Regulatory pathways are known to play crucial roles in many pathogenic processes. Thus, inferring risk regulatory pathways is an important step toward elucidating the mechanisms underlying CAD. With advances in high-throughput data, we developed an integrated systems approach to identify CAD risk regulatory pathways and key regulators. Firstly, a CAD-related core subnetwork was identified from a curated transcription factor (TF) and microRNA (miRNA) regulatory network based on a random walk algorithm. Secondly, candidate risk regulatory pathways were extracted from the subnetwork by applying a breadth-first search (BFS) algorithm. Then, risk regulatory pathways were prioritized based on multiple CAD-associated data sources. Finally, we also proposed a new measure to prioritize upstream regulators. We inferred that phosphatase and tensin homolog (PTEN) may be a key regulator in the dysregulation of risk regulatory pathways. This study takes a closer step than the identification of disease subnetworks or modules. From the risk regulatory pathways, we could understand the flow of regulatory information in the initiation and progression of the disease. Our approach helps to uncover its potential etiology. KEY MESSAGES: We developed an integrated systems approach to identify risk regulatory pathways. We proposed a new measure to prioritize the key regulators in CAD. PTEN may be a key regulator in dysregulation of the risk regulatory pathways.


Asunto(s)
Enfermedad de la Arteria Coronaria/genética , Enfermedad de la Arteria Coronaria/metabolismo , Regulación de la Expresión Génica , Transducción de Señal , Biología de Sistemas/métodos , Algoritmos , Análisis por Conglomerados , Biología Computacional/métodos , Conjuntos de Datos como Asunto , Perfilación de la Expresión Génica/métodos , Redes Reguladoras de Genes , Humanos , MicroARNs/genética , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Mapeo de Interacción de Proteínas/métodos , Mapas de Interacción de Proteínas , Factores de Transcripción/metabolismo
11.
Exp Mol Med ; 47: e138, 2015 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-25656948

RESUMEN

The aim of this study was to investigate the expression of circulating microRNAs (miRNAs) in apolipoprotein E (apoE) knockout mice (apoE(-/-)) and to validate the role of these miRNAs in human coronary artery disease (CAD). Pooled plasma from 10 apoE(-/-) mice and 10 healthy C57BL/6 (B6) mice was used to perform the microarray analysis. The results showed that miR-34a, miR-21, miR-23a, miR-30a and miR-106b were differentially expressed in apoE(-/-) mice, and these expression changes were confirmed by real-time quantitative reverse-transcription PCR. Then, miR-34a, miR-21, miR-23a, miR-30a and miR-106b were detected in the plasma of 32 patients with CAD and of 20 healthy controls. Only miR-34a, miR-21 and miR-23a were significantly differentially expressed in the plasma of CAD patients (all P<0.01). In conclusion, miR-34a, miR-21 and miR-23a were elevated in CAD patients, which means that these miRNAs might serve as biomarkers of CAD development and progression.


Asunto(s)
Enfermedad de la Arteria Coronaria/genética , MicroARNs/genética , Anciano , Animales , Apolipoproteínas E/deficiencia , Biomarcadores , Estudios de Casos y Controles , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Humanos , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad , Proyectos Piloto , Reproducibilidad de los Resultados , Factores de Riesgo
12.
J Alzheimers Dis ; 43(2): 519-34, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25114080

RESUMEN

The stress protein heme oxygenase-1 (HO-1) is upregulated and co-localizes to pathological features, including tauopathies in the brains of individuals with Alzheimer's disease. However, the relationship between HO-1 and Alzheimer's disease remains unclear. In our previous research, the long-term overexpression of HO-1 was shown to promote tau aggregation by inducing tau phosphorylation in the mouse brain. In this study, we found that the long-term overexpression of HO-1 led to cognitive decline in transgenic mice, as determined by the water maze test, and that HO-1 can affect two pathways for tauopathy. Through one pathway, HO-1 promotes the expression of CDK5 by accumulating reactive oxygen species, which are produced by HO-1 downstream products of iron in neuro2a cell lines and mouse brain. Through the second pathway, HO-1 induces tau truncation at D421 in vivo and in vitro. Clearly, there is a HO-1-dependent mechanism responsible for tau protein phosphorylation and tau truncation in vivo and in vitro. Taken together, our results suggest that HO-1 plays an important role in the disease process of tauopathies in AD.


Asunto(s)
Encéfalo/metabolismo , Trastornos del Conocimiento/genética , Regulación de la Expresión Génica/genética , Hemo-Oxigenasa 1/metabolismo , Tauopatías/metabolismo , Animales , Trastornos del Conocimiento/metabolismo , Trastornos del Conocimiento/patología , Quinasa 5 Dependiente de la Ciclina/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Ácido Glutámico/farmacología , Hemo-Oxigenasa 1/genética , Humanos , Hierro/metabolismo , Hierro/farmacología , Aprendizaje por Laberinto/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Fosforilación/efectos de los fármacos , Protoporfirinas/farmacología , ARN Mensajero/metabolismo , Tiempo de Reacción/genética , Especies Reactivas de Oxígeno/metabolismo , Aprendizaje Espacial/fisiología , Tauopatías/patología
13.
Int J Biol Sci ; 10(9): 973-82, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25210495

RESUMEN

Preeclampsia is a serious complication in pregnancy. Dysregulation of trophoblast cell proliferation and invasion is a major pathological alteration observed in preeclampsia. Recently, microRNAs were shown to participate in the pathogenesis of preeclampsia. In this study we explored the effect of miR-20a on the proliferation and invasion of trophoblast cells and the underlying mechanism. We verified the distribution of miR-20a in human placenta by in situ hybridization. Real time PCR data showed that the level of miR-20a increased by 2.6 folds in human preeclampsia than normal tissues. We then cultured trophoblast-like JEG-3 cells and evaluated the effect of miR-20a on JEG-3 cell proliferation, migration and invasion. Overexpression of miR-20a significantly inhibited the proliferation, migration and invasion of cultured JEG-3 cells, which were abolished by co-transfection of AMO-20a. Transfection of miR-20a also inhibited JEG-3 cell xenograft tumor growth in nude mice. Luciferase assay technique was used to identify the direct regulation of miR-20a on Forkhead Box Protein A1(FOXA1). Transfection of miR-20a markedly reduced the luciferase activity of the chimeric plasmid containing the 3'UTR of FOXA1, indicating FOXA1 is the target of miR-20a. Furthermore, transfection of miR-20a inhibited both protein and mRNA expression of FOXA1 in JEG-3 cells. In summary, the upregulated miR-20a in human preeclampsia tissue can inhibit the proliferative and invasive activities of trophoblast cells by repressing the expression of FOXA1.


Asunto(s)
Factor Nuclear 3-alfa del Hepatocito/metabolismo , MicroARNs/metabolismo , Placenta/metabolismo , Preeclampsia/metabolismo , Trofoblastos/fisiología , Animales , Animales Modificados Genéticamente , Línea Celular Tumoral , Proliferación Celular , Femenino , Factor Nuclear 3-alfa del Hepatocito/genética , Humanos , Masculino , Ratones , Ratones Desnudos , MicroARNs/genética , Neoplasias Experimentales/metabolismo , Placenta/patología , Preeclampsia/genética , Preeclampsia/patología , Embarazo , Trofoblastos/citología , Regulación hacia Arriba
14.
J Cell Mol Med ; 18(6): 966-74, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24801603

RESUMEN

The transition from liver fibrosis to hepatocellular carcinoma (HCC) has been suggested to be a continuous and developmental pathological process. MicroRNAs (miRNAs) are recently discovered molecules that regulate the expression of genes involved in liver disease. Many reports demonstrate that miR-483-5p and miR-483-3p, which originate from miR-483, are up-regulated in HCC, and their oncogenic targets have been identified. However, recent studies have suggested that miR-483-5p/3p is partially down-regulated in HCC samples and is down-regulated in rat liver fibrosis. Therefore, the aberrant expression and function of miR-483 in liver fibrosis remains elusive. In this study, we demonstrate that overexpression of miR-483 in vivo inhibits mouse liver fibrosis induced by CCl4 . We demonstrate that miR-483-5p/3p acts together to target two pro-fibrosis factors, platelet-derived growth factor-ß and tissue inhibitor of metalloproteinase 2, which suppress the activation of hepatic stellate cells (HSC) LX-2. Our work identifies the pathway that regulates liver fibrosis by inhibiting the activation of HSCs.


Asunto(s)
Carcinoma Hepatocelular/prevención & control , Células Estrelladas Hepáticas/citología , Cirrosis Hepática/prevención & control , MicroARNs/genética , Factor de Crecimiento Derivado de Plaquetas/antagonistas & inhibidores , Inhibidor Tisular de Metaloproteinasa-2/antagonistas & inhibidores , Factor de Crecimiento Transformador beta/farmacología , Animales , Tetracloruro de Carbono/toxicidad , Carcinoma Hepatocelular/etiología , Carcinoma Hepatocelular/metabolismo , Células Cultivadas , Técnicas de Cocultivo , Células Estrelladas Hepáticas/efectos de los fármacos , Células Estrelladas Hepáticas/metabolismo , Humanos , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/genética , Neoplasias Hepáticas/etiología , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/prevención & control , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 2 de la Matriz/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , MicroARNs/metabolismo , Factor de Crecimiento Derivado de Plaquetas/genética , Factor de Crecimiento Derivado de Plaquetas/metabolismo , ARN Mensajero/genética , Ratas , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Inhibidor Tisular de Metaloproteinasa-2/genética , Inhibidor Tisular de Metaloproteinasa-2/metabolismo
15.
Exp Mol Med ; 45: e13, 2013 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-23470715

RESUMEN

The microRNA (miRNA) regulation mechanisms associated with atherosclerosis are largely undocumented. Specific selection and efficient validation of miRNA regulation pathways involved in atherosclerosis development may be better assessed by contemporary microarray platforms applying cross-verification methodology. A screening platform was established using both miRNA and genomic microarrays. Microarray analysis was then simultaneously performed on pooled atherosclerotic aortic tissues from 10 Apolipoprotein E (apoE) knockout mice (apoE-/-) and 10 healthy C57BL/6 (B6) mice. Differentiated miRNAs were screened and cross-verified against an mRNA screen database to explore integrative mRNA-miRNA regulation. Gene set enrichment analysis was conducted to describe the potential pathways regulated by these mRNA-miRNA interactions. High-throughput data analysis of miRNA and genomic microarrays of knockout and healthy control mice revealed 75 differentially expressed miRNAs in apoE-/- mice at a threshold value of 2. The six miRNAs with the greatest differentiation expression were confirmed by real-time quantitative reverse-transcription PCR (qRT-PCR) in atherosclerotic tissues. Significantly enriched pathways, such as the type 2 diabetes mellitus pathway, were observed by a gene-set enrichment analysis. The enriched molecular pathways were confirmed through qRT-PCR evaluation by observing the presence of suppressor of cytokine signaling 3 (SOCS3) and SOCS3-related miRNAs, miR-30a, miR-30e and miR-19b. Cross-verified high-throughput microarrays are optimally accurate and effective screening methods for miRNA regulation profiles associated with atherosclerosis. The identified SOCS3 pathway is a potentially valuable target for future development of targeted miRNA therapies to control atherosclerosis development and progression.


Asunto(s)
Apolipoproteínas E/deficiencia , Regulación de la Expresión Génica , MicroARNs/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Transducción de Señal/genética , Animales , Aorta/metabolismo , Aorta/patología , Apolipoproteínas E/metabolismo , Aterosclerosis/genética , Aterosclerosis/patología , Regulación hacia Abajo/genética , Perfilación de la Expresión Génica , Redes Reguladoras de Genes/genética , Inmunohistoquímica , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , MicroARNs/metabolismo , Modelos Biológicos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reproducibilidad de los Resultados , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteína 3 Supresora de la Señalización de Citocinas , Proteínas Supresoras de la Señalización de Citocinas/genética , Proteínas Supresoras de la Señalización de Citocinas/metabolismo , Regulación hacia Arriba/genética
16.
J Appl Physiol (1985) ; 112(7): 1128-34, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22241060

RESUMEN

Few studies have been performed on the individual-specific trajectory of left ventricular aging as assessed by echocardiography in an asymptomatic elderly cohort. In the present study, a representative cohort of elderly men, who were long-term asymptomatic for cardiovascular issues, were selected from an ongoing observational aging study. Annual echocardiographic data were used to establish an age-dependent hierarchical model. Based on two-level linear regression results, four echocardiographic indexes [left ventricular mass (LVmass; -1.872 g/yr), posterior ventricular wall thickness (-0.048 mm/yr), fraction shortening (0.097/yr), and transmitral peak A velocity (-0.006 m·s(-1)·yr(-1))] changed significantly with increasing age and were age- and subject-dependent. The most characterized results of the study were the significant, age-related, within-individual variances in echocardiographic results, which were observed using the likelihood ratio test at an occasion-dependent level. Of these, fluctuated amplitudes of two systolic variables [i.e., LVmass (con/age = -0.012 ± 0.004; P = 0.0007) and fraction shortening (con/age = -0.001 ± 0.004; P = 0.05)] were significantly attenuated with increasing age within individuals. On the other hand, the age-related variability of four diastolic Doppler variables [i.e., peak A velocity (con/age = 0.003 ± 0.002; P = 0.0009), peak E velocity (con/age = 0.004 ± 0.003; P = 0.01), E/A ratio (con/age = 0.007 ± 0.003; P = 0.0002), and deceleration time of E wave (con/age = 0.025 ± 0.007; P < 0.0001)] significantly increased with increasing age within individuals. The age-related individual variability of left ventricular indexes observed in this continuous asymptomatic cohort may reflect the mechanism of preclinical, individualized heart aging. In conclusion, successfully fitted multilevel models were applied as a valuable tool to determine the mechanism of individual cardiac aging in the elderly.


Asunto(s)
Envejecimiento/fisiología , Ventrículos Cardíacos/diagnóstico por imagen , Función Ventricular Izquierda/fisiología , Anciano , Anciano de 80 o más Años , Estudios de Cohortes , Ecocardiografía , Femenino , Humanos , Funciones de Verosimilitud , Modelos Lineales , Estudios Longitudinales , Masculino , Modelos Estadísticos
17.
Hypertension ; 59(2): 265-73, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22203747

RESUMEN

In this study, to search for novel preeclampsia (PE) biomarkers, we focused on microRNA expression and function in the human placenta complicated with PE. By comprehensive analyses of microRNA expression, we identified 22 microRNAs significantly upregulated in preeclamptic placentas, 5 of which were predicted in silico to commonly target the mRNA encoding hydroxysteroid (17-ß) dehydrogenase 1 (HSD17B1), a steroidogenetic enzyme expressed predominantly in the placenta. In vivo HSD17B1 expression, at both the mRNA and protein levels, was significantly decreased in preeclamptic placentas. Of these microRNAs, miR-210 and miR-518c were experimentally validated to target HSD17B1 by luciferase assay, real-time PCR, and ELISA. Furthermore, we found that plasma HSD17B1 protein levels in preeclamptic pregnant women reflected the decrease of its placental expression. Moreover, a prospective cohort study of plasma HSD17B1 revealed a significant reduction of plasma HSD17B1 levels in pregnant women at 20 to 23 and 27 to 30 weeks of gestation before PE onset compared with those with normal pregnancies. The sensitivities/specificities for predicting PE at 20 to 23 and 27 to 30 weeks of gestation were 0.75/0.67 (cutoff value=21.9 ng/mL) and 0.88/0.51 (cutoff value=30.5 ng/mL), and the odds ratios were 6.09 (95% CI: 2.35-15.77) and 7.83 (95% CI: 1.70-36.14), respectively. We conclude that HSD17B1 is dysregulated by miR-210 and miR-518c that are aberrantly expressed in preeclamptic placenta and that reducing plasma level of HSD17B1 precedes the onset of PE and is a potential prognostic factor for PE.


Asunto(s)
Estradiol Deshidrogenasas/metabolismo , MicroARNs/metabolismo , Placenta/metabolismo , Preeclampsia/diagnóstico , Preeclampsia/metabolismo , Complicaciones Cardiovasculares del Embarazo/diagnóstico , Complicaciones Cardiovasculares del Embarazo/metabolismo , Adulto , Biomarcadores/metabolismo , Células Cultivadas , Estudios de Cohortes , Femenino , Humanos , Hipoxia/metabolismo , Placenta/citología , Valor Predictivo de las Pruebas , Embarazo , Segundo Trimestre del Embarazo/metabolismo , Tercer Trimestre del Embarazo/metabolismo , Pronóstico , Estudios Prospectivos , Curva ROC , Trofoblastos/citología , Trofoblastos/metabolismo
18.
Sci Signal ; 4(198): ra74, 2011 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-22067459

RESUMEN

Short double-stranded RNAs (dsRNAs) induce type I interferon (IFN)-mediated innate immune responses. In functional studies with short interfering RNAs or synthetic mimics of microRNA precursors in vitro, we found that short dsRNAs readily induced apoptosis in cells derived from human granulosa cell tumors, but not in other cell types. Apoptosis was independent of the sequence of the dsRNA, but depended on its length, and was induced by 23- and 24-nucleotide (nt) dsRNAs, but not by shorter dsRNAs (< 22 nt) or by the long dsRNA polyinosinic-polycytidylic acid. Microarray analysis revealed that apoptosis was accompanied by the increased expression of IFN-stimulated genes; however, several lines of evidence showed that IFNs did not directly induce apoptosis. Subsequent analyses revealed that the short dsRNAs increased the expression of retinoic acid-inducible gene I (RIG-I) through dsRNA-activated protein kinase (PKR). Although these dsRNAs bore 3' overhangs and nontriphosphate 5' termini, which are not thought to be RIG-I-activating structures, the dsRNAs bound to RIG-I and triggered proapoptotic signaling mostly by activating RIG-I, which was followed by activation of the mitogen-activated protein kinase p38. Thus, we suggest that ligand recognition and subsequent signaling by RNA sensors are more complicated than previously believed. In addition, short dsRNAs may serve as pharmacological agents to target specific tumors, such as granulosa cell tumors.


Asunto(s)
Apoptosis/fisiología , ARN Helicasas DEAD-box/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , ARN Bicatenario/metabolismo , Apoptosis/efectos de los fármacos , Proteína 58 DEAD Box , Activación Enzimática/efectos de los fármacos , Activación Enzimática/fisiología , Células HeLa , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Especificidad de Órganos , ARN Bicatenario/farmacología , Receptores Inmunológicos , eIF-2 Quinasa/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
19.
Biol Reprod ; 81(4): 717-29, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19494253

RESUMEN

In this study, we performed small RNA library sequencing using human placental tissues to identify placenta-specific miRNAs. We also tested the hypothesis that human chorionic villi could secrete miRNAs extracellularly via exosomes, which in turn enter into maternal circulation. By small RNA library sequencing, most placenta-specific miRNAs (e.g., MIR517A) were linked to a miRNA cluster on chromosome 19. The miRNA cluster genes were differentially expressed in placental development. Subsequent validation by real-time PCR and in situ hybridization revealed that villous trophoblasts express placenta-specific miRNAs. The analysis of small RNA libraries from the blood plasma showed that the placenta-specific miRNAs are abundant in the plasma of pregnant women. By real-time PCR, we confirmed the rapid clearance of the placenta-specific miRNAs from the plasma after delivery, indicating that such miRNAs enter into maternal circulation. By using the trophoblast cell line BeWo in culture, we demonstrated that miRNAs are indeed extracellularly released via exosomes. Taken together, our findings suggest that miRNAs are exported from the human placental syncytiotrophoblast into maternal circulation, where they could target maternal tissues. Finally, to address the biological functions of placenta-specific miRNAs, we performed a proteome analysis of BeWo cells transfected with MIR517A. Bioinformatic analysis suggests that this miRNA is possibly involved in tumor necrosis factor-mediated signaling. Our data provide important insights into miRNA biology of the human placenta.


Asunto(s)
Vellosidades Coriónicas/metabolismo , Exosomas/metabolismo , MicroARNs/metabolismo , Embarazo/sangre , Trofoblastos/metabolismo , Línea Celular , Femenino , Perfilación de la Expresión Génica , Humanos , Hibridación in Situ , Reacción en Cadena de la Polimerasa , Proteómica , Análisis de Secuencia de ARN
20.
Reproduction ; 136(6): 811-22, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18772262

RESUMEN

MicroRNAs (miRNAs) are endogenous non-coding small RNAs that can regulate the expression of complementary mRNA targets. Identifying tissue-specific miRNAs is the first step toward understanding the biological functions of miRNAs, which include the regulation of tissue differentiation and the maintenance of tissue identity. In this study, we performed small RNA library sequencing in adult mouse testis and ovary to reveal their characteristic organ- and gender-specific profiles and to elucidate the characteristics of the miRNAs expressed in the reproductive system. We obtained 10,852 and 11 744 small RNA clones from mouse testis and ovary respectively (greater than 10,000 clones per organ), which included 6630 (159 genes) and 10,192 (154 genes) known miRNAs. A high level of efficiency of miRNA library sequencing was achieved: 61% (6630 miRNA clones/10,852 small RNA clones) and 87% (10,192/11,744) for adult mouse testis and ovary respectively. We obtained characteristic miRNA signatures in testis and ovary; 55 miRNAs were detected highly, exclusively, or predominantly in adult mouse testis and ovary, and discovered two novel miRNAs. Male-biased expression of miRNAs occurred on the X-chromosome. Our data provide important information on sex differences in miRNA expression that should facilitate studies of the reproductive organ-specific roles of miRNAs.


Asunto(s)
Perfilación de la Expresión Génica , MicroARNs/análisis , Ovario/metabolismo , Caracteres Sexuales , Testículo/metabolismo , Animales , Secuencia de Bases , Clonación Molecular , Biología Computacional , Femenino , Expresión Génica , Masculino , Ratones , Ratones Endogámicos BALB C , MicroARNs/genética , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...