Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Respir Med ; 227: 107631, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38631526

RESUMEN

Pulmonary hypertension (PH) is a pathophysiological disorder that may involve multiple clinical conditions and may be associated with a variety of cardiovascular and respiratory diseases. Pulmonary hypertension due to left heart disease (PH-LHD) currently lacks targeted therapies, while Pulmonary arterial hypertension (PAH), despite approved treatments, carries considerable residual risk. Metabolic dysfunction has been linked to the pathogenesis and prognosis of PH through various studies, with emerging metabolic agents offering a potential avenue for improving patient outcomes. Sodium-glucose cotransporter 2 inhibitor (SGLT-2i), a novel hypoglycemic agent, could ameliorate metabolic dysfunction and exert cardioprotective effects. Recent small-scale studies suggest SGLT-2i treatment may improve pulmonary artery pressure in patients with PH-LHD, and the PAH animal model shows that SGLT-2i can reduce pulmonary vascular remodeling and prevent progression in PAH, suggesting potential benefits for patients with PH-LHD and perhaps PAH. This review aims to succinctly review PH's pathophysiology, and the connection between metabolic dysfunction and PH, and investigate the prospective mechanisms of action of SGLT-2i in PH-LHD and PAH management.


Asunto(s)
Hipertensión Pulmonar , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Humanos , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Hipertensión Pulmonar/tratamiento farmacológico , Hipertensión Pulmonar/fisiopatología , Animales , Remodelación Vascular/efectos de los fármacos , Hipertensión Arterial Pulmonar/tratamiento farmacológico , Hipertensión Arterial Pulmonar/fisiopatología
2.
Plants (Basel) ; 12(18)2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37765504

RESUMEN

Autophagy is a highly conserved self-degradation process that involves the degradation and recycling of cellular components and organelles. Although the involvement of autophagy in metabolic changes during fruit ripening has been preliminarily demonstrated, the variations in autophagic flux and specific functional roles in tomato fruit ripening remain to be elucidated. In this study, we analyzed the variations in autophagic flux during tomato fruit ripening. The results revealed differential expression of the SlATG8 family members during tomato fruit ripening. Transmission electron microscopy observations and dansylcadaverine (MDC) staining confirmed the presence of autophagy at the cellular level in tomato fruits. Furthermore, the overexpression of SlATG8f induced the formation of autophagosomes, increased autophagic flux within tomato fruits, and effectively enhanced the expression of ATG8 proteins during the color-transition phase of fruit ripening, thus promoting tomato fruit maturation. SlATG8f overexpression also led to the accumulation of vitamin C (VC) and soluble solids while reducing acidity in the fruit. Collectively, our findings highlight the pivotal role of SlATG8f in enhancing tomato fruit ripening, providing insights into the mechanistic involvement of autophagy in this process. This research contributes to a better understanding of the key factors that regulate tomato fruit quality and offers a theoretical basis for tomato variety improvement.

3.
Eur J Pharm Sci ; 184: 106415, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36870579

RESUMEN

Hyponatremia is the most common electrolyte disorder in clinical practice, which may lead to life-threatening complications. Several lines of evidence suggest that hyponatremia is associated not only with significant increases in length of stay, cost, and financial burden, but also with increased morbidity and mortality. Hyponatremia is also considered to be a negative prognostic factor in patients with heart failure and cancer. Although multiple therapeutic methods are available for treating hyponatremia, most have some limitations, such as poor compliance, rapid correction of serum Na+, other negative side effects and high cost. Given these limitations, identifying novel therapies for hyponatremia is essential. Recent clinical studies have shown that SGLT-2 inhibitors (SGLT 2i) significantly increased serum Na+ levels and were well tolerated by patients who underwent this treatment. Therefore, oral administration of SGLT 2i appears to be an effective treatment for hyponatremia. This article will briefly review the etiology of hyponatremia and integrated control of sodium within the kidney, current therapies for hyponatremia, potential mechanisms and efficacy of SGLT 2i for hyponatremia, and the benefits in cardiovascular, cancer, and kidney disease by regulating sodium and water balance.


Asunto(s)
Enfermedades Cardiovasculares , Insuficiencia Cardíaca , Hiponatremia , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Humanos , Hiponatremia/tratamiento farmacológico , Hiponatremia/etiología , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico , Sodio , Insuficiencia Cardíaca/tratamiento farmacológico , Enfermedades Cardiovasculares/tratamiento farmacológico
4.
Front Endocrinol (Lausanne) ; 14: 1098881, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36909336

RESUMEN

Over the past few decades, increasing prevalence of obesity caused an enormous medical, social, and economic burden. As the sixth most important risk factor contributing to the overall burden of disease worldwide, obesity not only directly harms the human body, but also leads to many chronic diseases such as diabetes, cardiovascular diseases (CVD), nonalcoholic fatty liver disease (NAFLD), and mental illness. Weight loss is still one of the most effective strategies against obesity and related disorders. Recently, the link between intestinal microflora and metabolic health has been constantly established. Butyrate, a four-carbon short-chain fatty acid, is a major metabolite of the gut microbiota that has many beneficial effects on metabolic health. The anti-obesity activity of butyrate has been demonstrated, but its mechanisms of action have not been fully described. This review summarizes current knowledge of butyrate, including its production, absorption, distribution, metabolism, and the effect and mechanisms involved in weight loss and obesity-related diseases. The aim was to contribute to and advance our understanding of butyrate and its role in obesity. Further exploration of butyrate and its pathway may help to identify new anti-obesity.


Asunto(s)
Butiratos , Obesidad , Humanos , Butiratos/farmacología , Obesidad/metabolismo , Ácidos Grasos Volátiles/metabolismo , Factores de Riesgo , Pérdida de Peso
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA