Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 57(37): 13991-14001, 2023 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-37523249

RESUMEN

Coprecipitation of Fe/Cr hydroxides with natural organic matter (NOM) is an important pathway for Cr immobilization. However, the role of NOM in coprecipitation is still controversial due to its molecular heterogeneity and diversity. This study focused on the molecular selectivity of NOM toward Fe/Cr coprecipitates to uncover the fate of Cr via Fourier transform-ion cyclotron resonance-mass spectrometry (FT-ICR-MS). The results showed that the significant effects of Suwannee River NOM (SRNOM) on Cr immobilization and stability of the Fe/Cr coprecipitates did not merely depend on the adsorption of SRNOM on Fe/Cr hydroxides. FT-ICR-MS spectra suggested that two pathways of molecular selectivity of SRNOM in the coprecipitation affected Cr immobilization. Polycyclic aromatics and polyphenolic compounds in SRNOM preferentially adsorbed on the Fe/Cr hydroxide nanoparticles, which provided extra binding sites and promoted the aggregation. Notably, some specific compounds (i.e., polyphenolic compounds and highly unsaturated phenolic compounds), less unsaturated and more oxygenated than those adsorbed on Fe/Cr hydroxide nanoparticles, were preferentially incorporated into the insoluble Cr-organic complexes in the coprecipitates. Kendrick mass defect analysis revealed that the insoluble Cr-organic complexes contained fewer carbonylated homologous compounds. More importantly, the spatial distribution of insoluble Cr-organic complexes was strongly related to Cr immobilization and stability of the Fe/Cr-NOM coprecipitates. The molecular information of the Fe/Cr-NOM coprecipitates would be beneficial for a better understanding of the transport and fate of Cr and exploration of the related remediation strategy.


Asunto(s)
Nanopartículas , Fenoles , Espectrometría de Masas , Nanopartículas/química , Adsorción
2.
Environ Res ; 214(Pt 4): 113991, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35961546

RESUMEN

Nitrogen and phosphorus levels in livestock manure and digestive fluid are high, posing a threat to soil and water quality and necessitating nutrient removal and recovery. Phosphorus recovery has the potential to alleviate the global phosphorus resource crisis. This study proposed a magnesium anode constant voltage electrolysis method to crystallise struvite (magnesium ammonium phosphate hexahydrate, MgNH4PO4·6H2O) from anaerobically digested chicken manure slurry using reaction kinetics at variable constant voltages ranging from 2 V to 12 V. The recovery of nitrogen and phosphorus was shown to be effective over a wide initial pH range (3.00 ± 0.03-7.90 ± 0.10) using synthetic digestion fluids. Moreover, the pH gradually increased during the reaction without any external chemical adjustments. The phosphorus recovery rates conformed to the first-order kinetic model, with a maximum rate constant of 2.13 h-1. When the best voltage of 2 V was used at 25 ± 1 °C, the recovery rate reached 5.24 mg P h-1cm-2 in the synthetic digestion fluids during 90 min and 4.60 mg P h-1cm-2 in the anaerobically digested chicken manure slurry. The crystalline products recovered were identified as high-purity struvite by XRD and XPS. The purity of recovered struvite with an initial pH of 3.00 and 7.90 was 96.5% and 98.9%, respectively. These results demonstrated that the magnesium electrode could rapidly react with nitrogen and phosphorus to generate high-purity struvite.


Asunto(s)
Magnesio , Estiércol , Animales , Pollos , Electrodos , Compuestos de Magnesio/química , Nitrógeno , Fosfatos/química , Fósforo/química , Estruvita
3.
Water Res ; 222: 118877, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35872518

RESUMEN

The presence of heavy metals alters the colloidal stability and deposition of nanoplastics (NPs) in urban waters. Such processes are important to assess the mobility and fate of NPs and their associated heavy metals. Up to date, few studies have reported the impact of heavy metals on the colloidal behaviors of NPs and the involved mechanisms. In the study, time-resolved dynamic light scattering (DLS) and quartz crystal microbalance with dissipation (QCM-D) methods were used to assess the aggregation and deposition kinetics of polystyrene nanospheres with divalent heavy metals. For comparison, carboxyl-modified polystyrene nanospheres were used. Results reveal that heavy metals destabilized NPs more significantly than calcium ions. Spectroscopy and transmission electron microscopy analysis propose that heavy metals destabilized NPs via inner-sphere coordination with carboxyl groups and cation-π interactions, further leading to the formation of different dimensional aggregates. QCM-D results suggest that the deposition rate, irreversibility, and film compactness of NPs on silica surfaces first increased but further decreased as heavy metal concentration increased. Such deposition behaviors depended on the bridging effects between NPs and silica and aggregation-induced diffusion limitation. In that case, the destabilization and retention ability of heavy metals for NPs were related to their electronegativity and hydration shell thickness. In urban waters, the presence of natural organic matter (NOM) decreased the destabilization and retention ability of heavy metals, whereas heavy metals with environmentally relevant concentrations still enhanced the aggregation and deposition of NPs compared with other environmental cations. This study highlights the impact of heavy metal property on the colloidal behaviors of NPs, thus deepening our understanding of the mobility and fate of NPs associated with heavy metals in urban waters.


Asunto(s)
Metales Pesados , Poliestirenos , Cationes , Cinética , Microplásticos , Poliestirenos/química , Dióxido de Silicio , Agua/química
4.
Bioresour Technol ; 321: 124429, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33285504

RESUMEN

This study aimed to investigate the synergistic effect and microbial community changes between chicken manure (CM) and cardboard (CB) during anaerobic co-digestion. Meanwhile, the energy balance of biogas engineering was extrapolated based on the batch tests. In batch tests, co-digestion system achieved the highest improvement (14.2%) and produced 319.62 mL CH4/gVS with a 65:35 ratio of CB: CM. More extracellular polymeric substance secretion promoted the electron transfer for acidogenesis and more hydrolase was provided with 31.6% improvement. The microbial analysis illustrated that higher acetoclastic Methanosaeta abundance was achieved, leading to 211% enhancement of acetoclastic pathway. Moreover, associated network illustrated that the higher methane production was mainly achieved through matching of hydrolytic bacteria and acidogenesis bacteria. As for energy balance, the synergistic effect increased the energy output by 38% and energy recovery to 46.4%.


Asunto(s)
Estiércol , Microbiota , Anaerobiosis , Animales , Biocombustibles , Reactores Biológicos , Pollos , Digestión , Matriz Extracelular de Sustancias Poliméricas , Metano
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...