Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Theranostics ; 14(6): 2544-2559, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38646641

RESUMEN

Background: Mechanical forces are indispensable for bone healing, disruption of which is recognized as a contributing cause to nonunion or delayed union. However, the underlying mechanism of mechanical regulation of fracture healing is elusive. Methods: We used the lineage-tracing mouse model, conditional knockout depletion mouse model, hindlimb unloading model and single-cell RNA sequencing to analyze the crucial roles of mechanosensitive protein polycystin-1 (PC1, Pkd1) promotes periosteal stem/progenitor cells (PSPCs) osteochondral differentiation in fracture healing. Results: Our results showed that cathepsin (Ctsk)-positive PSPCs are fracture-responsive and mechanosensitive and can differentiate into osteoblasts and chondrocytes during fracture repair. We found that polycystin-1 declines markedly in PSPCs with mechanical unloading while increasing in response to mechanical stimulus. Mice with conditional depletion of Pkd1 in Ctsk+ PSPCs show impaired osteochondrogenesis, reduced cortical bone formation, delayed fracture healing, and diminished responsiveness to mechanical unloading. Mechanistically, PC1 facilitates nuclear translocation of transcriptional coactivator TAZ via PC1 C-terminal tail cleavage, enhancing osteochondral differentiation potential of PSPCs. Pharmacological intervention of the PC1-TAZ axis and promotion of TAZ nuclear translocation using Zinc01442821 enhances fracture healing and alleviates delayed union or nonunion induced by mechanical unloading. Conclusion: Our study reveals that Ctsk+ PSPCs within the callus can sense mechanical forces through the PC1-TAZ axis, targeting which represents great therapeutic potential for delayed fracture union or nonunion.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Diferenciación Celular , Condrocitos , Curación de Fractura , Osteogénesis , Células Madre , Canales Catiónicos TRPP , Animales , Curación de Fractura/fisiología , Ratones , Canales Catiónicos TRPP/metabolismo , Canales Catiónicos TRPP/genética , Condrocitos/metabolismo , Células Madre/metabolismo , Osteogénesis/fisiología , Ratones Noqueados , Condrogénesis/fisiología , Periostio/metabolismo , Osteoblastos/metabolismo , Osteoblastos/fisiología , Modelos Animales de Enfermedad , Masculino
2.
Bone Res ; 12(1): 6, 2024 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-38267422

RESUMEN

Skeletal stem/progenitor cell (SSPC) senescence is a major cause of decreased bone regenerative potential with aging, but the causes of SSPC senescence remain unclear. In this study, we revealed that macrophages in calluses secrete prosenescent factors, including grancalcin (GCA), during aging, which triggers SSPC senescence and impairs fracture healing. Local injection of human rGCA in young mice induced SSPC senescence and delayed fracture repair. Genetic deletion of Gca in monocytes/macrophages was sufficient to rejuvenate fracture repair in aged mice and alleviate SSPC senescence. Mechanistically, GCA binds to the plexin-B2 receptor and activates Arg2-mediated mitochondrial dysfunction, resulting in cellular senescence. Depletion of Plxnb2 in SSPCs impaired fracture healing. Administration of GCA-neutralizing antibody enhanced fracture healing in aged mice. Thus, our study revealed that senescent macrophages within calluses secrete GCA to trigger SSPC secondary senescence, and GCA neutralization represents a promising therapy for nonunion or delayed union in elderly individuals.


Asunto(s)
Callosidades , Fracturas Óseas , Anciano , Humanos , Animales , Ratones , Curación de Fractura , Senescencia Celular , Envejecimiento , Macrófagos , Células Madre
3.
Trends Endocrinol Metab ; 35(5): 439-451, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38242815

RESUMEN

The bone serves as an energy reservoir and actively engages in whole-body energy metabolism. Numerous studies have determined fuel requirements and bioenergetic properties of bone under physiological conditions as well as the dysregulation of energy metabolism associated with bone metabolic diseases. Here, we review the main sources of energy in bone cells and their regulation, as well as the endocrine role of the bone in systemic energy homeostasis. Moreover, we discuss metabolic changes that occur as a result of osteoporosis. Exploration in this area will contribute to an enhanced comprehension of bone energy metabolism, presenting novel possibilities to address metabolic diseases.


Asunto(s)
Huesos , Metabolismo Energético , Homeostasis , Humanos , Metabolismo Energético/fisiología , Homeostasis/fisiología , Huesos/metabolismo , Animales , Osteoporosis/metabolismo
4.
Cell Metab ; 35(11): 1915-1930.e8, 2023 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-37703873

RESUMEN

Weight regain after weight loss is a major challenge in the treatment of obesity. Immune cells adapt to fluctuating nutritional stress, but their roles in regulating weight regain remain unclear. Here, we identify a stem cell-like CD7+ monocyte subpopulation accumulating in the bone marrow (BM) of mice and humans that experienced dieting-induced weight loss. Adoptive transfer of CD7+ monocytes suppresses weight regain, whereas inducible depletion of CD7+ monocytes accelerates it. These cells, accumulating metabolic memories via epigenetic adaptations, preferentially migrate to the subcutaneous white adipose tissue (WAT), where they secrete fibrinogen-like protein 2 (FGL2) to activate the protein kinase A (PKA) signaling pathway and facilitate beige fat thermogenesis. Nevertheless, CD7+ monocytes gradually enter a quiescent state after weight loss, accompanied by increased susceptibility to weight regain. Notably, administration of FMS-like tyrosine kinase 3 ligand (FLT3L) remarkably rejuvenates CD7+ monocytes, thus ameliorating rapid weight regain. Together, our findings identify a unique bone marrow-derived metabolic-memory immune cell population that could be targeted to combat obesity.


Asunto(s)
Médula Ósea , Aumento de Peso , Humanos , Aumento de Peso/fisiología , Médula Ósea/metabolismo , Obesidad/metabolismo , Pérdida de Peso , Dieta Reductora , Termogénesis/fisiología , Fibrinógeno
5.
EMBO J ; 42(9): e111762, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-36943004

RESUMEN

Senescence and altered differentiation potential of bone marrow stromal cells (BMSCs) lead to age-related bone loss. As an important posttranscriptional regulatory pathway, alternative splicing (AS) regulates the diversity of gene expression and has been linked to induction of cellular senescence. However, the role of splicing factors in BMSCs during aging remains poorly defined. Herein, we found that the expression of the splicing factor Y-box binding protein 1 (YBX1) in BMSCs decreased with aging in mice and humans. YBX1 deficiency resulted in mis-splicing in genes linked to BMSC osteogenic differentiation and senescence, such as Fn1, Nrp2, Sirt2, Sp7, and Spp1, thus contributing to BMSC senescence and differentiation shift during aging. Deletion of Ybx1 in BMSCs accelerated bone loss in mice, while its overexpression stimulated bone formation. Finally, we identified a small compound, sciadopitysin, which attenuated the degradation of YBX1 and bone loss in old mice. Our study demonstrated that YBX1 governs cell fate of BMSCs via fine control of RNA splicing and provides a potential therapeutic target for age-related osteoporosis.


Asunto(s)
Células Madre Mesenquimatosas , Osteoporosis , Humanos , Ratones , Animales , Osteogénesis/genética , Envejecimiento/metabolismo , Senescencia Celular , Diferenciación Celular/genética , Osteoporosis/metabolismo , Células de la Médula Ósea , Proteína 1 de Unión a la Caja Y/metabolismo
7.
Cell Death Dis ; 13(10): 904, 2022 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-36302749

RESUMEN

Islet ß cell dysfunction and insulin resistance are the main pathogenesis of type 2 diabetes (T2D), but the mechanism remains unclear. Here we identify a rs3819316 C > T mutation in lncRNA Reg1cp mainly expressed in islets associated with an increased risk of T2D. Analyses in 16,113 Chinese adults reveal that Mut-Reg1cp individuals had higher incidence of T2D and presented impaired insulin secretion as well as increased insulin resistance. Mice with islet ß cell specific Mut-Reg1cp knock-in have more severe ß cell dysfunction and insulin resistance. Mass spectrometry assay of proteins after RNA pulldown demonstrate that Mut-Reg1cp directly binds to polypyrimidine tract binding protein 1 (PTBP1), further immunofluorescence staining, western blot analysis, qPCR analysis and glucose stimulated insulin secretion test reveal that Mut-Reg1cp disrupts the stabilization of insulin mRNA by inhibiting the phosphorylation of PTBP1 in ß cells. Furthermore, islet derived exosomes transfer Mut-Reg1cp into peripheral tissue, which then promote insulin resistance by inhibiting AdipoR1 translation and adiponectin signaling. Our findings identify a novel mutation in lncRNA involved in the pathogenesis of T2D, and reveal a new mechanism for the development of T2D.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Células Secretoras de Insulina , Islotes Pancreáticos , ARN Largo no Codificante , Animales , Ratones , Diabetes Mellitus Tipo 2/metabolismo , Insulina/metabolismo , Resistencia a la Insulina/genética , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Humanos
8.
Cell Metab ; 34(8): 1168-1182.e6, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35705079

RESUMEN

Exercise can prevent osteoporosis and improve immune function, but the mechanism remains unclear. Here, we show that exercise promotes reticulocalbin-2 secretion from the bone marrow macrophages to initiate bone marrow fat lipolysis. Given the crucial role of lipolysis in exercise-stimulated osteogenesis and lymphopoiesis, these findings suggest that reticulocalbin-2 is a pivotal regulator of a local adipose-osteogenic/immune axis. Mechanistically, reticulocalbin-2 binds to a functional receptor complex, which is composed of neuronilin-2 and integrin beta-1, to activate a cAMP-PKA signaling pathway that mobilizes bone marrow fat via lipolysis to fuel the differentiation and function of mesenchymal and hematopoietic stem cells. Notably, the administration of recombinant reticulocalbin-2 in tail-suspended and old mice remarkably decreases bone marrow fat accumulation and promotes osteogenesis and lymphopoiesis. These findings identify reticulocalbin-2 as a novel mechanosensitive lipolytic factor in maintaining energy homeostasis in bone resident cells, and it provides a promising target for skeletal and immune health.


Asunto(s)
Células Madre Mesenquimatosas , Osteogénesis , Animales , Médula Ósea/metabolismo , Células de la Médula Ósea/metabolismo , Diferenciación Celular , Células Cultivadas , Lipólisis , Linfopoyesis , Células Madre Mesenquimatosas/metabolismo , Ratones
9.
Cell Death Dis ; 13(5): 494, 2022 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-35610206

RESUMEN

A specific bone capillary subtype, namely type H vessels, with high expression of CD31 and endomucin, was shown to couple angiogenesis and osteogenesis recently. The number of type H vessels in bone tissue declines with age, and the underlying mechanism for this reduction is unclear. Here, we report that microRNA-188-3p (miR-188-3p) involves this process. miRNA-188-3p expression is upregulated in skeletal endothelium and negatively regulates the formation of type H vessels during ageing. Mice with depletion of miR-188 showed an alleviated age-related decline in type H vessels. In contrast, endothelial-specific overexpression of miR-188-3p reduced the number of type H vessels, leading to decreased bone mass and delayed bone regeneration. Mechanistically, we found that miR-188 inhibits type H vessel formation by directly targeting integrin ß3 in endothelial cells. Our findings indicate that miR-188-3p is a key regulator of type H vessel formation and may be a potential therapeutic target for preventing bone loss and accelerating bone regeneration.


Asunto(s)
MicroARNs , Osteogénesis , Envejecimiento/genética , Animales , Células Endoteliales/metabolismo , Endotelio , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Neovascularización Patológica , Osteogénesis/genética
10.
JCI Insight ; 7(6)2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35143419

RESUMEN

Mucosal healing is a key treatment goal for inflammatory bowel disease, and adequate epithelial regeneration is required for an intact gut epithelium. However, the underlying mechanism for mucosal healing is unclear. Long noncoding RNAs (lncRNAs) have been reported to be involved in the development of inflammatory bowel disease. Here, we report that a lncRNA named Gm31629 decreased in intestinal epithelial cells in response to inflammatory stimulation. Gm31629 deficiency led to exacerbated intestinal inflammation and delayed epithelial regeneration in dextran sulfate sodium-induced (DSS-induced) colitis model. Mechanistically, Gm31629 promoted E2F pathways and cell proliferation by stabilizing Y-box protein 1 (YB-1), thus facilitating epithelial regeneration. Genetic overexpression of Gm31629 protected against DSS-induced colitis in vivo. Theaflavin 3-gallate, a natural compound mimicking Gm31629, alleviated DSS-induced epithelial inflammation and mucosal damage. These results demonstrate an essential role of lncRNA Gm31629 in linking intestinal inflammation and epithelial cell proliferation, providing a potential therapeutic approach to inflammatory bowel disease.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , ARN Largo no Codificante , Animales , Colitis/inducido químicamente , Colitis/genética , Colitis/prevención & control , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad , Inflamación/genética , Inflamación/metabolismo , Enfermedades Inflamatorias del Intestino/genética , Enfermedades Inflamatorias del Intestino/metabolismo , Mucosa Intestinal/metabolismo , Ratones , Ratones Endogámicos C57BL , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Factores de Transcripción/metabolismo
12.
Cell Metab ; 33(10): 1957-1973.e6, 2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34614408

RESUMEN

Skeletal aging is characterized by low bone turnover and marrow fat accumulation. However, the underlying mechanism for this imbalance is unclear. Here, we show that during aging in rats and mice proinflammatory and senescent subtypes of immune cells, including macrophages and neutrophils, accumulate in the bone marrow and secrete abundant grancalcin. The injection of recombinant grancalcin into young mice was sufficient to induce premature skeletal aging. In contrast, genetic deletion of Gca in neutrophils and macrophages delayed skeletal aging. Mechanistically, we found that grancalcin binds to the plexin-b2 receptor and partially inactivates its downstream signaling pathways, thus repressing osteogenesis and promoting adipogenesis of bone marrow mesenchymal stromal cells. Heterozygous genetic deletion of Plexnb2 in skeletal stem cells abrogated the improved bone phenotype of Gca-knockout mice. Finally, we developed a grancalcin-neutralizing antibody and showed that its treatment of older mice improved bone health. Together, our data suggest that grancalcin could be a potential target for the treatment of age-related osteoporosis.


Asunto(s)
Células Madre Mesenquimatosas , Adipogénesis , Envejecimiento , Animales , Médula Ósea , Células de la Médula Ósea/metabolismo , Diferenciación Celular , Células Madre Mesenquimatosas/metabolismo , Ratones , Osteogénesis , Ratas
13.
J Cell Physiol ; 236(6): 4152-4173, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33452680

RESUMEN

Autophagy is an evolutionarily conserved intracellular process and is considered one of the main catabolism pathways. In the process of autophagy, cells are digested nonselectively or selectively to recover nutrients and energy, so it is regarded as an antiaging process. In addition to the essential role of autophagy in cellular homeostasis, autophagy is a stress response mechanism for cell survival. Here, we review recent literature describing the pathway of autophagy and its role in different bone cell types, including osteoblasts, osteoclasts, and osteocytes. Also discussed is the mechanism of autophagy in bone diseases associated with bone homeostasis, including osteoporosis and Paget's disease. Finally, we discuss the application of autophagy regulators in bone diseases. This review aims to introduce autophagy, summarize the understanding of its relevance in bone physiology, and discuss its role and therapeutic potential in the pathogenesis of bone diseases such as osteoporosis.


Asunto(s)
Autofagia , Remodelación Ósea , Huesos/patología , Osteítis Deformante/patología , Osteoartritis/patología , Osteoporosis/patología , Animales , Autofagia/efectos de los fármacos , Proteínas Relacionadas con la Autofagia/metabolismo , Conservadores de la Densidad Ósea/uso terapéutico , Remodelación Ósea/efectos de los fármacos , Huesos/efectos de los fármacos , Huesos/metabolismo , Huesos/fisiopatología , Homeostasis , Humanos , Osteítis Deformante/tratamiento farmacológico , Osteítis Deformante/metabolismo , Osteítis Deformante/fisiopatología , Osteoartritis/tratamiento farmacológico , Osteoartritis/metabolismo , Osteoartritis/fisiopatología , Osteoporosis/tratamiento farmacológico , Osteoporosis/metabolismo , Osteoporosis/fisiopatología
14.
Aging (Albany NY) ; 13(2): 2149-2167, 2020 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-33318306

RESUMEN

Obesity is characterized by the expansion of adipose tissue which is partially modulated by adipogenesis. In the present study, we identified five differentially expressed genes by incorporating two adipogenesis-related datasets from the GEO database and their correlation with adipogenic markers. However, the role of scavenger receptor class A member 3 (SCARA3) in obesity-related disorders has been rarely reported. We found that Scara3 expression in old adipose tissue-derived mesenchymal stem cells (Ad-MSCs) was lower than it in young Ad-MSCs. Obese mice caused by deletion of the leptin receptor gene (db/db) or by a high-fat diet both showed reduced Scara3 expression in inguinal white adipose tissue. Moreover, hypermethylation of SCARA3 was observed in patients with type 2 diabetes and atherosclerosis. Data from the CTD database indicated that SCARA3 is a potential target for metabolic diseases. Mechanistically, JUN was predicted as a transcriptional factor of SCARA3 in different databases which is consistent with our further bioinformatics analysis. Collectively, our study suggested that SCARA3 is potentially associated with age-related metabolic dysfunction, which provided new insights into the pathogenesis and treatment of obesity as well as other obesity-associated metabolic complications.


Asunto(s)
Tejido Adiposo Blanco/metabolismo , Aterosclerosis/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Proteínas de Choque Térmico/metabolismo , Obesidad/metabolismo , Receptores Depuradores de Clase A/metabolismo , Adipogénesis/fisiología , Animales , Aterosclerosis/genética , Metilación de ADN , Bases de Datos Genéticas , Diabetes Mellitus Tipo 2/genética , Dieta Alta en Grasa , Redes Reguladoras de Genes , Proteínas de Choque Térmico/genética , Humanos , Masculino , Ratones , Obesidad/genética , Receptores de Leptina/genética , Receptores Depuradores de Clase A/genética
15.
Cell Prolif ; 53(3): e12784, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32080957

RESUMEN

OBJECTIVES: CD31hi EMCNhi vessels (CD31, also known as PECAM1 [platelet and endothelial cell adhesion molecule 1]; EMCN, endomucin), which are strongly positive for CD31 and endomucin, couple angiogenesis and osteogenesis. However, the role of CD31hi EMCNhi vessels in bone regeneration remains unknown. In the present study, we investigated the role of CD31hi EMCNhi vessels in the process of bone regeneration. MATERIALS AND METHODS: We used endothelial-specific Krüppel like factor 3 (Klf3) knockout mice and ophiopogonin D treatment to interfere with CD31hi EMCNhi vessel formation. We constructed a bone regeneration model by surgical ablation of the trabecular bone. Immunofluorescence and micro-computed tomography (CT) were used to detect CD31hi EMCNhi vessels and bone formation. RESULTS: CD31hi EMCNhi vessels participate in the process of bone regeneration, such that endothelial-specific Klf3 knockout mice showed increased CD31hi EMCNhi vessels and osteoprogenitors in the bone regeneration area, and further accelerated bone formation. We also demonstrated that the natural compound, ophiopogonin D, acts as a KLF3 inhibitor to promote vessels formation both in vitro and in vivo. Administration of ophiopogonin D increased the abundance of CD31hi Emcnhi vessels and accelerated bone healing. CONCLUSIONS: Our findings confirmed the important role of CD31hi Emcnhi vessels in bone regeneration and provided a new target to treat bone fracture or promote bone regeneration.


Asunto(s)
Regeneración Ósea/efectos de los fármacos , Neovascularización Fisiológica/efectos de los fármacos , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Saponinas/farmacología , Sialoglicoproteínas/metabolismo , Espirostanos/farmacología , Animales , Células Cultivadas , Factores de Transcripción de Tipo Kruppel/antagonistas & inhibidores , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Osteogénesis/efectos de los fármacos
16.
Cell Metab ; 31(3): 534-548.e5, 2020 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-32004475

RESUMEN

Age-dependent loss of hypothalamic neural stem cells (htNSCs) is important for the pathological consequences of aging; however, it is unclear what drives the senescence of htNSCs. Here, we report that a long non-coding RNA, Hnscr, is abundantly expressed in the htNSCs of young mice but decreases markedly in middle-aged mice. We show that depletion of Hnscr is sufficient to drive the senescence of htNSCs and aging-like phenotypes in mice. Mechanistically, Hnscr binds to Y-box protein 1 (YB-1) to prevent its degradation and thus the attenuation of transcription of the senescence marker gene p16INK4A. Through molecular docking, we discovered that a naturally occurring small compound, theaflavin 3-gallate, can mimic the activity of Hnscr. Treatment of middle-aged mice with theaflavin 3-gallate reduced the senescence of htNSCs while improving aging-associated pathology. These results point to a mediator of the aging process and one that can be pharmacologically targeted to improve aging-related outcomes.


Asunto(s)
Envejecimiento/fisiología , Senescencia Celular , Hipotálamo/citología , Células-Madre Neurales/citología , Animales , Biflavonoides/química , Biflavonoides/farmacología , Catequina/química , Catequina/farmacología , Senescencia Celular/efectos de los fármacos , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Ácido Gálico/análogos & derivados , Ácido Gálico/química , Ácido Gálico/farmacología , Células HEK293 , Humanos , Ratones Endogámicos C57BL , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/metabolismo , Fenotipo , Unión Proteica/efectos de los fármacos , Estabilidad Proteica/efectos de los fármacos , Proteolisis/efectos de los fármacos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Proteína 1 de Unión a la Caja Y/metabolismo
17.
Aging Cell ; 19(1): e13077, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31762181

RESUMEN

With the increasing aging population, aging-associated diseases are becoming epidemic worldwide, including aging-associated metabolic dysfunction. However, the underlying mechanisms are poorly understood. In the present study, we aimed to investigate the role of microRNA miR-188 in the aging-associated metabolic phenotype. The results showed that the expression of miR-188 increased gradually in brown adipose tissue (BAT) and inguinal white adipose tissue (iWAT) of mice during aging. MiR-188 knockout mice were resistant to the aging-associated metabolic phenotype and had higher energy expenditure. Meanwhile, adipose tissue-specific miR-188 transgenic mice displayed the opposite phenotype. Mechanistically, we identified the thermogenic-related gene Prdm16 (encoding PR domain containing 16) as the direct target of miR-188. Notably, inhibition of miR-188 expression in BAT and iWAT of aged mice by tail vein injection of antagomiR-188 ameliorated aging-associated metabolic dysfunction significantly. Taken together, our findings suggested that miR-188 plays an important role in the regulation of the aging-associated metabolic phenotype, and targeting miR-188 could be an effective strategy to prevent aging-associated metabolic dysfunction.


Asunto(s)
Envejecimiento , MicroARNs/metabolismo , Animales , Humanos , Masculino , Ratones , Ratones Noqueados , Fenotipo , Transfección
18.
J Exp Med ; 216(8): 1944-1964, 2019 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-31196982

RESUMEN

High bone mass (HBM) is usually caused by gene mutations, and its mechanism remains unclear. In the present study, we identified a novel mutation in the long noncoding RNA Reg1cp that is associated with HBM. Subsequent analysis in 1,465 Chinese subjects revealed that heterozygous Reg1cp individuals had higher bone density compared with subjects with WT Reg1cp Mutant Reg1cp increased the formation of the CD31hiEmcnhi endothelium in the bone marrow, which stimulated angiogenesis during osteogenesis. Mechanistically, mutant Reg1cp directly binds to Krüppel-like factor 3 (KLF3) to inhibit its activity. Mice depleted of Klf3 in endothelial cells showed a high abundance of CD31hiEmcnhi vessels and increased bone mass. Notably, we identified a natural compound, Ophiopogonin D, which functions as a KLF3 inhibitor. Administration of Ophiopogonin D increased the abundance of CD31hiEmcnhi vessels and bone formation. Our findings revealed a specific mutation in lncRNA Reg1cp that is involved in the pathogenesis of HBM and provides a new target to treat osteoporosis.


Asunto(s)
Hiperostosis Cortical Congénita/genética , Hiperostosis Cortical Congénita/metabolismo , Factores de Transcripción de Tipo Kruppel/antagonistas & inhibidores , Mutación , Osteopetrosis/genética , Osteopetrosis/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Animales , Densidad Ósea/genética , China , Estudios de Cohortes , Células Progenitoras Endoteliales/metabolismo , Femenino , Heterocigoto , Humanos , Hiperostosis Cortical Congénita/sangre , Hiperostosis Cortical Congénita/patología , Factores de Transcripción de Tipo Kruppel/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Neovascularización Fisiológica/genética , Osteogénesis/efectos de los fármacos , Osteogénesis/genética , Osteopetrosis/sangre , Osteopetrosis/patología , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Saponinas/administración & dosificación , Saponinas/farmacología , Sialoglicoproteínas/metabolismo , Espirostanos/administración & dosificación , Espirostanos/farmacología , Adulto Joven
19.
ACS Nano ; 13(2): 2450-2462, 2019 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-30715852

RESUMEN

Insulin resistance is the major pathological characteristic of type 2 diabetes, and the elderly often develop insulin resistance. However, the deep-seated mechanisms for aging-related insulin resistance remain unclear. Here, we showed that nanosized exosomes released by bone marrow mesenchymal stem cells (BM-MSCs) of aged mice could be taken up by adipocytes, myocytes, and hepatocytes, resulting in insulin resistance both in vivo and in vitro. Using microRNA (miRNA) array assays, we found that the amount of miR-29b-3p was dramatically increased in exosomes released by BM-MSCs of aged mice. Mechanistically, SIRT1 (sirtuin 1) was identified to function as the downstream target of exosomal miR-29b-3p in regulating insulin resistance. Notably, utilizing an aptamer-mediated nanocomplex delivery system that down-regulated the level of miR-29b-3p in BM-MSCs-derived exosomes significantly ameliorated the insulin resistance of aged mice. Meanwhile, BM-MSCs-specific overexpression of miR-29b-3p induced insulin resistance in young mice. Taken together, these findings suggested that BM-MSCs-derived exosomal miR-29b-3p could modulate aging-related insulin resistance, which may serve as a potential therapeutic target for aging-associated insulin resistance.


Asunto(s)
Envejecimiento/metabolismo , Médula Ósea/metabolismo , Exosomas/metabolismo , Células Madre Mesenquimatosas/metabolismo , MicroARNs/metabolismo , Células 3T3-L1 , Animales , Células Cultivadas , Exosomas/química , Humanos , Resistencia a la Insulina , Ratones , MicroARNs/química , MicroARNs/genética , Análisis de Secuencia por Matrices de Oligonucleótidos
20.
J Clin Invest ; 128(12): 5251-5266, 2018 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-30352426

RESUMEN

Bone marrow mesenchymal stem cells (BMSCs) exhibit an age-related lineage switch between osteogenic and adipogenic fates, which contributes to bone loss and adiposity. Here we identified a long noncoding RNA, Bmncr, which regulated the fate of BMSCs during aging. Mice depleted of Bmncr (Bmncr-KO) showed decreased bone mass and increased bone marrow adiposity, whereas transgenic overexpression of Bmncr (Bmncr-Tg) alleviated bone loss and bone marrow fat accumulation. Bmncr regulated the osteogenic niche of BMSCs by maintaining extracellular matrix protein fibromodulin (FMOD) and activation of the BMP2 pathway. Bmncr affected local 3D chromatin structure and transcription of Fmod. The absence of Fmod modified the bone phenotype of Bmncr-Tg mice. Further analysis revealed that Bmncr would serve as a scaffold to facilitate the interaction of TAZ and ABL, and thus facilitate the assembly of the TAZ and RUNX2/PPARG transcriptional complex, promoting osteogenesis and inhibiting adipogenesis. Adeno-associated viral-mediated overexpression of Taz in osteoprogenitors alleviated bone loss and marrow fat accumulation in Bmncr-KO mice. Furthermore, restoring BMNCR levels in human BMSCs reversed the age-related switch between osteoblast and adipocyte differentiation. Our findings indicate that Bmncr is a key regulator of the age-related osteogenic niche alteration and cell fate switch of BMSCs.


Asunto(s)
Envejecimiento/metabolismo , Médula Ósea/metabolismo , Células Madre Mesenquimatosas/metabolismo , ARN Largo no Codificante/metabolismo , Esqueleto/crecimiento & desarrollo , Adipocitos/metabolismo , Adipogénesis/genética , Adiposidad/genética , Envejecimiento/genética , Animales , Proteína Morfogenética Ósea 2/genética , Proteína Morfogenética Ósea 2/metabolismo , Fibromodulina/genética , Fibromodulina/metabolismo , Humanos , Ratones , Ratones Noqueados , Osteoblastos/metabolismo , Osteogénesis/genética , Osteoporosis/genética , Osteoporosis/metabolismo , ARN Largo no Codificante/genética , Transducción de Señal/genética , Esqueleto/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...