Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Org Chem ; 88(19): 13699-13711, 2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37747962

RESUMEN

The selective C(sp3)-S bond cleavage of thioethers was first developed to prepare unsymmetrical disulfides by using electrophilic halogenation reagents. In this strategy, NBS (N-bromosuccinimide) achieves selective furfuryl C(sp3)-S bond cleavage of furfuryl alkylthioethers at room temperature. Meanwhile, NFSI (N-fluorobenzenesulfonimide) enables selective methyl C(sp3)-S bond cleavage of aryl and alkyl methylthioethers at an elevated temperature. Notably, the substrate scope investigation indicates that the order of selectivity of the C-S bond cleavage is furfuryl C(sp3)-S > benzyl C(sp3)-S > alkyl C(sp3)-S > C(sp2)-S bond. Moreover, this practical and operationally simple strategy also provides an important complementary way to access various unsymmetrical disulfides with excellent functional group tolerances and moderate to good yields.

3.
Sci Adv ; 9(29): eadg5858, 2023 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-37478187

RESUMEN

Semiconductor-based biointerfaces are typically established either on the surface of the plasma membrane or within the cytoplasm. In Gram-negative bacteria, the periplasmic space, characterized by its confinement and the presence of numerous enzymes and peptidoglycans, offers additional opportunities for biomineralization, allowing for nongenetic modulation interfaces. We demonstrate semiconductor nanocluster precipitation containing single- and multiple-metal elements within the periplasm, as observed through various electron- and x-ray-based imaging techniques. The periplasmic semiconductors are metastable and display defect-dominant fluorescent properties. Unexpectedly, the defect-rich (i.e., the low-grade) semiconductor nanoclusters produced in situ can still increase adenosine triphosphate levels and malate production when coupled with photosensitization. We expand the sustainability levels of the biohybrid system to include reducing heavy metals at the primary level, building living bioreactors at the secondary level, and creating semi-artificial photosynthesis at the tertiary level. The biomineralization-enabled periplasmic biohybrids have the potential to serve as defect-tolerant platforms for diverse sustainable applications.


Asunto(s)
Biomineralización , Periplasma , Periplasma/metabolismo , Membrana Celular/metabolismo , Citoplasma/metabolismo , Fotosíntesis
4.
Environ Pollut ; 334: 121781, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37150346

RESUMEN

Harmful algal blooms (HABs) pose a major environmental concern across the globe. In abundance, cyanobacteria, or so-called green-blue algae can produce extremely dangerous cyanotoxins that harm humans and animals. This study focused on the mapping and distribution of intracellular macro-and micronutrients of the wide-spread freshwater cyanobacteria Microcystis aeruginosa (M. aeruginosa). Towards a better understanding of trace metal uptake and homeostasis throughout the cell cycle, we quantitatively mapped the spatial distribution of the elements P, K, Fe, Ca, Zn, Mn, and Cu across the ultrastructure of frozen-hydrated single cells using state-of-the-art X-ray nanofluorescence imaging at the Advanced Photon Source (APS) at Argonne National Laboratory. Bulk cellular nutrient and trace metal content correlated well with the total intracellular elemental content in individual cells obtained by quantitative synchrotron X-ray fluorescence measurements. Multi-dimensional mappings showed P and K atoms colocalized as discrete semicircular hotspots that were analyzed with respect to their stoichiometry. Elevated Cu and Ca concentrations were detected along division plane of cells. P and K were found to have similar spatial elemental distribution with about 65% and 69% of the total cellular P and K, respectively, located at the hotspots. The P and K colocalization were refined further using nanotomography, showing a K envelope surrounding the P core. Inorganic P and organic P compounds were specified using solution-state 31P nuclear magnetic resonance (NMR) spectroscopy from M. aeruginosa. Of the total extracted P determined by 31P NMR spectroscopy, 47% were found to be nucleotides while only 11% were polyphosphates. Multimodal X-ray imaging provides a better understanding of intracellular biochemical processes in cyanobacteria, helping us monitor and combat an emerging environmental threat.


Asunto(s)
Chlorophyta , Cianobacterias , Oligoelementos , Humanos , Animales , Rayos X , Sincrotrones , Oligoelementos/análisis , Agua Dulce , Microscopía Fluorescente
5.
Metallomics ; 14(9)2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35751648

RESUMEN

Scanning X-ray fluorescence (XRF) tomography provides powerful characterization capabilities in evaluating elemental distribution and differentiating their inter- and intra-cellular interactions in a three-dimensional (3D) space. Scanning XRF tomography encounters practical challenges from the sample itself, where the range of rotation angles is limited by geometric constraints, involving sample substrates or nearby features either blocking or converging into the field of view. This study aims to develop a reliable and efficient workflow that can (1) expand the experimental window for nanoscale tomographic analysis of local areas of interest within a laterally extended specimen, and (2) bridge 3D analysis at micrometer and nanoscales on the same specimen. We demonstrate the workflow using a specimen of HeLa cells exposed to iron oxide core and titanium dioxide shell (Fe3O4/TiO2) nanocomposites. The workflow utilizes iterative and multiscale XRF data collection with intermediate sample processing by focused ion beam (FIB) sample preparation between measurements at different length scales. Initial assessment combined with precise sample manipulation via FIB allows direct removal of sample regions that are obstacles to both incident X-ray beam and outgoing XRF signals, which considerably improves the subsequent nanoscale tomography analysis. This multiscale analysis workflow has advanced bio-nanotechnology studies by providing deep insights into the interaction between nanocomposites and single cells at a subcellular level as well as statistical assessments from measuring a population of cells.


Asunto(s)
Nanopartículas , Fluorescencia , Células HeLa , Humanos , Flujo de Trabajo , Rayos X
6.
Inorg Chem ; 61(27): 10417-10424, 2022 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-35767723

RESUMEN

Methane, as the main component of natural gas, shale gas, and marsh gas, is regarded as an ideal clean energy to replace traditional fossil fuels and reduce carbon emissions. Porous materials with superior methane storage capacities are the key to the wide application of adsorbed natural gas technology in vehicle transportation. In this work, we applied a ligand tailoring strategy to a metal-organic framework (NOTT-101) to fine-tune its pore geometry, which was well characterized by gas and dye sorption measurements. High-pressure methane sorption isotherms revealed that the methane storage performance of the modified NOTT-101 can be effectively improved by decreasing the unusable uptake at 5 bar and increasing the total uptake under high pressures, achieving a substantially high volumetric methane storage working capacity of 190 cm3 (STP) cm-3 at 298 K and 5-80 bar.

7.
ACS Appl Mater Interfaces ; 14(30): 34269-34280, 2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-35561234

RESUMEN

Thermal evaporation is a promising deposition technique to scale up perovskite solar cells (PSCs) to large areas, but the lack of understanding of the mechanisms that lead to high-quality evaporated methylammonium lead triiodide (MAPbI3) films gives rise to devices with efficiencies lower than those obtained by spin coating. This work investigates the crystalline properties of MAPbI3 deposited by the thermal coevaporation of PbI2 and MAI, where the MAI evaporation rate is controlled by setting different temperatures for the MAI source and the PbI2 deposition rate is controlled with a quartz crystal microbalance (QCM). Using grazing incident wide-angle X-ray scattering (GIWAXS) and X-ray diffraction (XRD), we identify the formation of a secondary orthorhombic phase (with a Pnma space group) that appears at MAI source temperatures below 155 °C. With synchrotron-based X-ray fluorescence (XRF) microscopy, we show that the changes in crystalline phases are not necessarily due to changes in stoichiometry. The films show a stochiometric composition when the MAI source is heated between 140 to 155 °C, and the samples become slightly MAI rich at 165 °C. Increasing the MAI temperature beyond 165 °C introduces an excess of MAI in the film, which promotes the formation of films with low crystallinity that contain low-dimensional perovskites. When they are incorporated in solar cells, the films deposited at 165 °C result in the champion power conversion efficiency, although the presence of a small amount of low-dimensional perovskite may lead to a lower open-circuit voltage. We hypothesize that the formation of secondary phases in evaporated films limits the performance of PSCs and that their formation can be suppressed by controlling the MAI source temperature, bringing the film toward a phase-pure tetragonal structure. Control of the phases during perovskite evaporation is therefore crucial to obtain high-performance solar cells.

8.
Cancers (Basel) ; 13(17)2021 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-34503306

RESUMEN

Research in cancer nanotechnology is entering its third decade, and the need to study interactions between nanomaterials and cells remains urgent. Heterogeneity of nanoparticle uptake by different cells and subcellular compartments represent the greatest obstacles to a full understanding of the entire spectrum of nanomaterials' effects. In this work, we used flow cytometry to evaluate changes in cell cycle associated with non-targeted nanocomposite uptake by individual cells and cell populations. Analogous single cell and cell population changes in nanocomposite uptake were explored by X-ray fluorescence microscopy (XFM). Very few nanoparticles are visible by optical imaging without labeling, but labeling increases nanoparticle complexity and the risk of modified cellular uptake. XFM can be used to evaluate heterogeneity of nanocomposite uptake by directly imaging the metal atoms present in the metal-oxide nanocomposites under investigation. While XFM mapping has been performed iteratively in 2D with the same sample at different resolutions, this study is the first example of serial tomographic imaging at two different resolutions. A cluster of cells exposed to non-targeted nanocomposites was imaged with a micron-sized beam in 3D. Next, the sample was sectioned for immunohistochemistry as well as a high resolution "zoomed in" X-ray fluorescence (XRF) tomography with 80 nm beam spot size. Multiscale XRF tomography will revolutionize our ability to explore cell-to-cell differences in nanomaterial uptake.

9.
Nature ; 583(7818): 790-795, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32728239

RESUMEN

Organic-inorganic hybrid perovskites have electronic and optoelectronic properties that make them appealing in many device applications1-4. Although many approaches focus on polycrystalline materials5-7, single-crystal hybrid perovskites show improved carrier transport and enhanced stability over their polycrystalline counterparts, due to their orientation-dependent transport behaviour8-10 and lower defect concentrations11,12. However, the fabrication of single-crystal hybrid perovskites, and controlling their morphology and composition, are challenging12. Here we report a solution-based lithography-assisted epitaxial-growth-and-transfer method for fabricating single-crystal hybrid perovskites on arbitrary substrates, with precise control of their thickness (from about 600 nanometres to about 100 micrometres), area (continuous thin films up to about 5.5 centimetres by 5.5 centimetres), and composition gradient in the thickness direction (for example, from methylammonium lead iodide, MAPbI3, to MAPb0.5Sn0.5I3). The transferred single-crystal hybrid perovskites are of comparable quality to those directly grown on epitaxial substrates, and are mechanically flexible depending on the thickness. Lead-tin gradient alloying allows the formation of a graded electronic bandgap, which increases the carrier mobility and impedes carrier recombination. Devices based on these single-crystal hybrid perovskites show not only high stability against various degradation factors but also good performance (for example, solar cells based on lead-tin-gradient structures with an average efficiency of 18.77 per cent).

10.
Science ; 366(6472): 1509-1513, 2019 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-31857483

RESUMEN

Surface trap-mediated nonradiative charge recombination is a major limit to achieving high-efficiency metal-halide perovskite photovoltaics. The ionic character of perovskite lattice has enabled molecular defect passivation approaches through interaction between functional groups and defects. However, a lack of in-depth understanding of how the molecular configuration influences the passivation effectiveness is a challenge to rational molecule design. Here, the chemical environment of a functional group that is activated for defect passivation was systematically investigated with theophylline, caffeine, and theobromine. When N-H and C=O were in an optimal configuration in the molecule, hydrogen-bond formation between N-H and I (iodine) assisted the primary C=O binding with the antisite Pb (lead) defect to maximize surface-defect binding. A stabilized power conversion efficiency of 22.6% of photovoltaic device was demonstrated with theophylline treatment.

11.
Science ; 363(6427): 627-631, 2019 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-30733417

RESUMEN

The role of the alkali metal cations in halide perovskite solar cells is not well understood. Using synchrotron-based nano-x-ray fluorescence and complementary measurements, we found that the halide distribution becomes homogenized upon addition of cesium iodide, either alone or with rubidium iodide, for substoichiometric, stoichiometric, and overstoichiometric preparations, where the lead halide is varied with respect to organic halide precursors. Halide homogenization coincides with long-lived charge carrier decays, spatially homogeneous carrier dynamics (as visualized by ultrafast microscopy), and improved photovoltaic device performance. We found that rubidium and potassium phase-segregate in highly concentrated clusters. Alkali metals are beneficial at low concentrations, where they homogenize the halide distribution, but at higher concentrations, they form recombination-active second-phase clusters.

12.
Adv Mater ; 30(52): e1804792, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30368936

RESUMEN

Grain boundaries play a key role in the performance of thin-film optoelectronic devices and yet their effect in halide perovskite materials is still not understood. The biggest factor limiting progress is the inability to identify grain boundaries. Noncrystallographic techniques can misidentify grain boundaries, leading to conflicting literature reports about their influence; however, the gold standard - electron backscatter diffraction (EBSD) - destroys halide perovskite thin films. Here, this problem is solved by using a solid-state EBSD detector with 6000 times higher sensitivity than the traditional phosphor screen and camera. Correlating true grain size with photoluminescence lifetime, carrier diffusion length, and mobility shows that grain boundaries are not benign but have a recombination velocity of 1670 cm s-1 , comparable to that of crystalline silicon. Amorphous grain boundaries are also observed that give rise to locally brighter photoluminescence intensity and longer lifetimes. This anomalous grain boundary character offers a possible explanation for the mysteriously long lifetime and record efficiency achieved in small grain halide perovskite thin films. It also suggests a new approach for passivating grain boundaries, independent of surface passivation, to lead to even better performance in optoelectronic devices.

13.
Adv Mater Technol ; 3(6)2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33928184

RESUMEN

The personal ultraviolet (UV) dosimeter is a useful measurement tool to prevent UV induced dermal damages; however, conventional digital dosimeters are either bulky or require external power sources. Here, a wearable, colorimetric UV film dosimeter that provides color transition, from purple to transparent, is reported to indicate the UV dose. The film dosimeter is made of a purple photodegradable dye ((2Z,6Z)-2,6-bis(2-(2,6-diphenyl-4H-thiopyran-4-ylidene)ethylidene)cyclohexanone or DTEC) blended in low density polyethylene film. The DTEC film discolored 3.3 times more under the exposure of UV light (302 nm) than visible light (543 nm), and a UV bandpass filter is developed to increase this selectivity to UV light. The DTEC film completely discolors to transparency in 2 h under an AM 1.5 solar simulator, suggesting the potential as an indicator for individuals with types I-VI skin to predict interventions to avoid sunburn. Finally, the DTEC film is integrated with the UV bandpass filter on a wristband to function as a wearable dosimeter for low cost and convenient monitoring of sunlight exposure.

14.
Adv Mater ; 29(43)2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28961331

RESUMEN

Optoelectronic devices based on hybrid perovskites have demonstrated outstanding performance within a few years of intense study. However, commercialization of these devices requires barriers to their development to be overcome, such as their chemical instability under operating conditions. To investigate this instability and its consequences, the electric field applied to single crystals of methylammonium lead bromide (CH3 NH3 PbBr3 ) is varied, and changes are mapped in both their elemental composition and photoluminescence. Synchrotron-based nanoprobe X-ray fluorescence (nano-XRF) with 250 nm resolution reveals quasi-reversible field-assisted halide migration, with corresponding changes in photoluminescence. It is observed that higher local bromide concentration is correlated to superior optoelectronic performance in CH3 NH3 PbBr3 . A lower limit on the electromigration rate is calculated from these experiments and the motion is interpreted as vacancy-mediated migration based on nudged elastic band density functional theory (DFT) simulations. The XRF mapping data provide direct evidence of field-assisted ionic migration in a model hybrid-perovskite thin single crystal, while the link with photoluminescence proves that the halide stoichiometry plays a key role in the optoelectronic properties of the perovskite.

15.
ACS Appl Mater Interfaces ; 7(24): 13620-6, 2015 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-26058086

RESUMEN

Interfacial interactions between the polymer and graphene are pivotal in determining the reinforcement efficiency in the graphene-enhanced polymer nanocomposites. Here, we report on the dynamic process of graphene-induced oriented interfacial crystals of isotactic polypropylene (iPP) in the single fiber polymer composites by means of polarized optical microscopy (POM) and scanning electron microscopy (SEM). The graphene fibers are obtained by chemical reduction of graphene oxide fibers, and the latter is produced from the liquid crystalline dispersion of graphene oxide via a wet coagulation route. The lamellar crystals of iPP grow perpendicular to the fiber axis, forming an oriented transcrystalline (TC) interphase surrounding the graphene fiber. Various factors including the diameter of graphene fibers, crystallization temperature, and time are investigated. The dynamic process of polymer transcrystallization surrounding the graphene fiber is studied in the temperature range 124-132 °C. The Lauritzen-Hoffman theory of heterogeneous nucleation is applied to analyze the transcrystallization process, and the fold surface free energy is determined. Study into microstructures demonstrates a cross-hatched lamellar morphology of the TC interphase and the strong interfacial adhesion between the iPP and graphene. Under appropriate conditions, the ß-form transcrystals occur whereas the α-form transcrystals are predominant surrounding the graphene fibers.

16.
Langmuir ; 30(48): 14631-7, 2014 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-25412408

RESUMEN

We report on a series of experiments on large-area ordered patterns of graphene oxide on solid substrates deposited from aqueous dispersions by directed drop evaporation. The aqueous dispersion of graphene oxide exhibits phase transitions from isotropic to liquid crystalline nematic phases via a biphasic region with increasing concentration. In the single nematic phase, schlieren textures accompanied by oriented bands are frequent. Drying of drops in each phase results in deposition covering the whole drop base. The dynamic process of drop drying is analyzed based on the weight loss, radius change, and texture change over time. It is found that the radial bands develop in the nematic drops in the vicinity of the receding of the contact line and subsequently transform into birefringent stripes after drying. Study into the structure and morphology of the stripes reveals anisotropic wrinkling of graphene oxide sheets. The nature of stripe orientation is strongly dependent on the local nematic order at the dewetting water front. Various macroscopic patterns with different stripe orientations including radial spokes, spider webs, and parallel stripes have been generated by tuning the nematic order of drops.

17.
J Phys Chem B ; 118(22): 6038-46, 2014 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-24856901

RESUMEN

Interfacial interactions between conjugated polymers and carbon nanotubes are pivotal in determining the device performance of nanotube-based polymer electronic devices. Here, we report on interfacial structures and crystallization kinetics of poly(3-hexylthiophene) (P3HT) in the presence of single-walled carbon nanotubes (SWNTs) in anisole by means of transmission electron microscope (TEM) and ultraviolet-visible (UV-vis) absorption spectroscopy. Confined on SWNT surfaces, the P3HT forms nanofibril crystals perpendicular to the long axis of SWNTs. The equilibrium dissolution temperature of the P3HT crystals in anisole is determined to be 381 ± 10 K according to the Hoffman-Weeks extrapolation approach. Upon cooling, the polymer solution spontaneously undergoes a time-dependent chromism. Various kinetics factors such as crystallization temperature, concentration, and SWNT loading have been investigated. It is found that the growth rate (G) of the crystals scales with concentration (C) as G ∝ C(1.70±0.16). The Avrami model is utilized to analyze the nucleation mechanism and the Avrami exponents vary between 1.0 and 1.3. The Lauritzen-Hoffman theory is applied to study the chain-folding process. The fold surface free energy is calculated to be (5.28-11.9) × 10(-2) J m(-2). It is evident that the addition of 0.30 wt % SWNTs reduces the fold surface free energy by 55.6%.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...