Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Transplant Direct ; 10(6): e1623, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38757052

RESUMEN

Background: Vascularized composite allograft transplantation is a treatment option for complex tissue injuries; however, ischemia reperfusion injury and high acute rejection rates remain a challenge. Hypothermic machine perfusion using acellular storage perfusate is a potential solution. This study evaluated the University of Wisconsin Kidney Preservation Solution-1 (KPS-1) compared with normal saline (NS) for preservation of donor rat hindlimbs subjected to 24 h of ex vivo perfusion cold storage. Methods: Hindlimbs were subjected to 24-h perfusion cold storage with heparinized KPS-1 (n = 6) or heparinized NS (n = 6). Flow, resistance, and pH were measured continuously. At the end of the 24-h period, tissue was collected for histological analysis of edema and apoptosis. Results: KPS-1 perfused limbs showed significantly less edema than the NS group, as evidenced by lower limb weight gain (P < 0.001) and less interfascicular space (P < 0.001). KPS-perfused muscle had significantly less cell death than NS-perfused muscle based on terminal deoxynucleotidyl transferase dUTP nick-end labeling (P < 0.001) and cleaved caspase-3 staining (P = 0.045). During hypothermic machine perfusion, a significant decrease in pH over time was detected in both groups, with a significantly greater decline in pH in the KPS-1 group than in the NS group. There were no significant differences overall and over time in flow rate or vascular resistance between the KPS and NS groups. Conclusions: Perfusion with KPS-1 can successfully extend vascularized composite allograft perfusion cold storage for 24 h in a rat hindlimb model without significant edema or cell death.

2.
Food Chem ; 452: 139582, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38754170

RESUMEN

Pumpkin seeds represent a valuable source of plant protein and can be utilized in the production of plant-based milks. This study aims to investigate the effects of different pretreatment techniques on the stability of Pumpkin Seed Milk (PSM) and explore potential mechanisms. Raw pumpkin seeds underwent pretreatment through roasting, microwaving, and steaming to prepare PSM. Physiochemical attributes such as composition, storage stability, and particle size of PSM were evaluated. Results indicate that stability significantly improved at roasting temperatures of 160 °C, with the smallest particle size (305 ± 40 nm) and highest stability coefficient (0.710 ± 0.002) observed. Nutrient content in PSM remained largely unaffected at 160 °C. Protein oxidation levels, infrared, and fluorescence spectra analysis revealed that higher temperatures exacerbated the oxidation of pumpkin seed emulsion. Overall, roasting raw pumpkin seeds at 160 °C is suggested to enhance PSM quality while preserving nutrient content.

3.
bioRxiv ; 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38559100

RESUMEN

MYC-driven medulloblastoma (MB) is a highly aggressive cancer type with poor prognosis and limited treatment options. Through CRISPR-Cas9 screening across MB cell lines, we identified the Mediator-associated kinase CDK8 as the top dependence for MYC-driven MB. Loss of CDK8 markedly reduces MYC expression and impedes MB growth. Mechanistically, we demonstrate that CDK8 depletion suppresses ribosome biogenesis and mRNA translation. CDK8 regulates occupancy of phospho-Polymerase II at specific chromatin loci facilitating an epigenetic alteration that promotes transcriptional regulation of ribosome biogenesis. Additionally, CDK8-mediated phosphorylation of 4EBP1 plays a crucial role in initiating eIF4E-dependent translation. Targeting CDK8 effectively suppresses cancer stem and progenitor cells, characterized by increased ribosome biogenesis activity. We also report the synergistic inhibition of CDK8 and mTOR in vivo and in vitro . Overall, our findings establish a connection between transcription and translation regulation, suggesting a promising therapeutic approach targets multiple points in the protein synthesis network for MYC-driven MB.

4.
Neurochem Int ; 177: 105747, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38657682

RESUMEN

Stroke is the most devastating disease, causing paralysis and eventually death. Many clinical and experimental trials have been done in search of a new safe and efficient medicine; nevertheless, scientists have yet to discover successful remedies that are also free of adverse effects. This is owing to the variability in intensity, localization, medication routes, and each patient's immune system reaction. HIF-1α represents the modern tool employed to treat stroke diseases due to its functions: downstream genes such as glucose metabolism, angiogenesis, erythropoiesis, and cell survival. Its role can be achieved via two downstream EPO and VEGF strongly related to apoptosis and antioxidant processes. Recently, scientists paid more attention to drugs dealing with the HIF-1 pathway. This review focuses on medicines used for ischemia treatment and their potential HIF-1α pathways. Furthermore, we discussed the interaction between HIF-1α and other biological pathways such as oxidative stress; however, a spotlight has been focused on certain potential signalling contributed to the HIF-1α pathway. HIF-1α is an essential regulator of oxygen balance within cells which affects and controls the expression of thousands of genes related to sustaining homeostasis as oxygen levels fluctuate. HIF-1α's role in ischemic stroke strongly depends on the duration and severity of brain damage after onset. HIF-1α remains difficult to investigate, particularly in ischemic stroke, due to alterations in the acute and chronic phases of the disease, as well as discrepancies between the penumbra and ischemic core. This review emphasizes these contrasts and analyzes the future of this intriguing and demanding field.

5.
Hepatol Res ; 54(4): 392-402, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37950561

RESUMEN

AIMS: Biliary atresia (BA) is characterized by intrahepatic inflammation and rapid progression of liver fibrosis. Galectin-3, a beta-galactoside binding protein, is a key regulator of inflammation and fibrosis. The aim of this study was to characterize circulating and hepatic Galectin-3 levels in children with BA. METHODS: Plasma and liver samples were obtained from children with early BA at time of Kasai hepatoportoenterostomy, late BA at time of transplant, early and late other cholestatic liver diseases (CLD), and controls. Plasma Galectin-3 was measured using standard enzyme-linked immunoassay. Liver tissue was analyzed with multiplex immunohistochemistry and quantified using whole slide analysis. Statistical comparisons were made using nonparametric testing. RESULTS: Plasma Galectin-3 in late BA was significantly higher than in early BA (20.82 [12.45-30.46] vs. 11.30 [8.74-16.83] ng/mL, p = 0.0096). Galectin-3 levels correlated with markers of disease severity and interleukin-6. There were significantly more Galectin-3+ M2 macrophages in late BA in comparison to late other CLD (162 [157-233] vs. 49 [33-59] cells/mm2, p = 0.03). The number of Galectin-3+ M2 macrophages correlated with the number of activated hepatic stellate cells and bile duct proliferation. CONCLUSIONS: Plasma Galectin-3 is higher in late BA at time of transplant in comparison to early BA at time of Kasai. The number of Galectin-3 expressing M2 macrophages in late BA is elevated relative to late other CLD and was associated with other prognostic histological findings. Galectin-3 targeted therapy may be beneficial in slowing disease progression to cirrhosis in children with BA.

6.
Anat Rec (Hoboken) ; 307(2): 372-384, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37475155

RESUMEN

Inflammatory injury following ischemia-reperfusion (I/R) severely limits the efficacy of stroke treatment. Edaravone dexborneol (C.EDA) has been shown to reduce inflammation following a cerebral hemorrhage. However, the precise anti-inflammatory mechanism of C.EDA is unknown. In this study, we investigated whether C.EDA provides neuroprotection after I/R in rats, as well as the potential mechanisms involved. A middle cerebral artery occlusion/reperfusion (I/R) model was created using Sprague-Dawley rats. The blood flow of the central cerebral artery was monitored by a laser speckle imaging system. The neurological score was used to assess behavioral improvement. Cerebral infarction volume was measured by TTC staining. And the integrity of the blood-brain barrier was detected by Evan's blue staining. The expression of the nuclear factor kappa-B (NF-κB)/ the NOD-like receptor protein (NLRP3) inflammasome signal pathway and microglia polarization were detected by immunofluorescence and Western blotting. The cerebral blood flow ratio indicates that the cerebral I/R model was successfully established. After reperfusion for 72 h, the improvement of neurological scores, infarct volume reduction, and integrity of the blood-brain barrier was observed in I/R rats with C.EDA treatment. Meanwhile, the immunofluorescence result showed that the expression of iNOS, NLRP3, and NF-κB protein was decreased and the level of Arg1 was increased. Western blot analysis showed that the expression of NF-κB/NLRP3 signal pathway-related protein was decreased. In conclusion, this study indicates that C.EDA alleviates I/R injury by blocking the activation of the NLRP3 inflammasome and regulating the polarization of M1/M2 microglia via the NF-κB signal pathway.


Asunto(s)
FN-kappa B , Daño por Reperfusión , Ratas , Animales , FN-kappa B/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Inflamasomas/metabolismo , Edaravona/farmacología , Ratas Sprague-Dawley , Proteínas NLR , Transducción de Señal/fisiología , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/metabolismo
7.
Int J Neurosci ; : 1-9, 2023 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-37128910

RESUMEN

PURPOSE: The aim of this study was to explore the alternations regarding the HMGB1 and TLR4/NF-κB signaling pathway in juvenile rats with febrile seizure (FS). MATERIALS AND METHODS: During the animal modeling of the FS, seizures were triggered every four days by hot water (45 °C), and repeated ten times. After forty days' modeling, rats were divided into different groups according to the degree of seizure (FS (0) - FS (V)). Reverse transcription-polymerase chain reaction (RT-PCR) was used to evaluate the mRNA expressions of the HMGB1, TLR4 and NF-κB in the hippocampus, while Western-blot (WB) and immunofluorescence (IF) were employed to assess protein expressions. The enzyme-linked immunosorbent assay (ELISA) was used for analyzing the protein expressions in peripheral blood. RESULTS: The mRNA levels of the HMGB1, TLR4 and NF-κB in the hippocampus of both FS (V) and FS (IV) groups were significantly higher than WT, while there was no difference between FS (III) and WT. Concerning protein expressions, increased levels of the HMGB1, TLR4, and NF-κB in FS (V) were observed with a good consistency between the WB and IF, while no significant upregulation was shown in FS (IV). The ELISA results showed that the significance of the augmented proteins between the FS (V) and WT were smaller in the serum than the hippocampus. CONCLUSIONS: Our study shows seizure degree-related upregulations of HMGB1 and TLR4/NF-κB signaling pathway both in hippocampus and serum of juvenile rats with FS, suggesting the involvement of TLR/NF-κB pathway in inflammation promoted by HMGB1 during FS.

8.
Anat Rec (Hoboken) ; 306(3): 638-650, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36437694

RESUMEN

Early brain injury (EBI) refers to a series of pathophysiological brain lesions that occur within 72 hr after subarachnoid hemorrhage (SAH), which is an extremely crucial factor in the poor prognosis of patients. In EBI, ferroptosis has been proven to cause neuronal death. Quercetin (QCT) is effective in deactivating reactive oxygen species (ROS), inhibiting lipid peroxidation, and even chelating iron, but its role in SAH remains unclear. In this study, the mortality rate, severity grade of SAH, brain water content (BWC), blood-brain barrier permeability, and neurological function of the rats were detected. Moreover, mitochondrial morphology in cortical neurons were observed and their sizes were subsequently quantified. The levels of lipid peroxidation on glutathione and malondialdehyde (MDA) and glutathione peroxidase (GSH-Px) were determined, whereas the protein expressions of glutathione peroxidase 4 (GPX4), SLC7A11 (xCT), transferrin receptor 1 (TfR1), and ferroportin-1 (FPN1) were analyzed by western immunoblotting. The neurodegeneration involved in EBI was investigated by fluoro-Jade C staining, while iron staining was utilized to measure iron content. Our results showed that inhibition of ferroptosis by QCT could suppress EBI and improve neurological function in SAH rats. QCT increased the expression levels of GPX4, xCT, and FPN1, while downregulated TfR1, and exerted protective effects on neurons as well as alleviated iron accumulation and lipid peroxidation in the cortex of SAH rats. In conclusion, our study revealed that QCT might alleviate the EBI by inhibiting ferroptosis in SAH rats.


Asunto(s)
Lesiones Encefálicas , Ferroptosis , Hemorragia Subaracnoidea , Ratas , Animales , Quercetina/farmacología , Quercetina/uso terapéutico , Ratas Sprague-Dawley , Hemorragia Subaracnoidea/tratamiento farmacológico , Hemorragia Subaracnoidea/complicaciones , Hemorragia Subaracnoidea/metabolismo , Lesiones Encefálicas/tratamiento farmacológico , Lesiones Encefálicas/etiología , Lesiones Encefálicas/metabolismo , Hierro
9.
Front Aging Neurosci ; 14: 1033434, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36353687

RESUMEN

Transient receptor potential melastatin 2 (TRPM2), a non-selective cation channel, is involved in many physiological and pathological processes, including temperature sensing, synaptic plasticity regulation, and neurodegenerative diseases. However, the gating mechanism of TRPM2 channel is complex, which hinders its functional research. With the discovery of the Ca2+ binding site in the S2-S3 domain of TRPM2 channel, more and more attention has been drawn to the role of the transmembrane segments in channel gating. In this study, we focused on the D820-F867 segment around the S2 domain, and identified the key residues on it. Functional assays of the deletion mutants displayed that the deletions of D820-W835 and L836-P851 destroyed channel function totally, indicating the importance of these two segments. Sequence alignments on them found three polar and charged residues with high conservation (D820, E829, and R845). D820A, E829A, and R845A which removed the charge and the side chain of the residues were tested by 500 µM adenosine diphosphate-ribose (ADPR) or 50 mM Ca2+. E829A and R845A affected the characteristic of channel currents, while D820A behaved similarly to WT, indicating the participations of E829 and R845 in channel gating. The charge reversing mutants, E829K and R845D were then constructed and the electrophysiological tests showed that E829A and E829K made the channel lose function. Interestingly, R845A and R845D exhibited an inactivation process when using 500 µM ADPR, but activated normally by 50 mM Ca2+. Our data suggested that the negative charge at E829 took a vital part in channel activation, and R845 increased the stability of the Ca2+ combination in S2-S3 domain, thus guaranteeing the opening of TRPM2 channel. In summary, our identification of the key residues E829 and R845 in the transmembrane segments of TRPM2. By exploring the gating process of TRPM2 channel, our work helps us better understand the mechanism of TRPM2 as a potential biomarker in neurodegenerative diseases, and provides a new approach for the prediction, diagnosis, and prognosis of neurodegenerative diseases.

10.
J Biol Chem ; 298(11): 102530, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36209823

RESUMEN

Nonalcoholic steatohepatitis (NASH) is the most common chronic liver disease in the US, partly due to the increasing incidence of metabolic syndrome, obesity, and type 2 diabetes. The roles of bile acids and their receptors, such as the nuclear receptor farnesoid X receptor (FXR) and the G protein-coupled receptor TGR5, on the development of NASH are not fully clear. C57BL/6J male mice fed a Western diet (WD) develop characteristics of NASH, allowing determination of the effects of FXR and TGR5 agonists on this disease. Here we show that the FXR-TGR5 dual agonist INT-767 prevents progression of WD-induced hepatic steatosis, inflammation, and fibrosis, as determined by histological and biochemical assays and novel label-free microscopy imaging techniques, including third harmonic generation, second harmonic generation, and fluorescence lifetime imaging microscopy. Furthermore, we show INT-767 decreases liver fatty acid synthesis and fatty acid and cholesterol uptake, as well as liver inflammation. INT-767 markedly changed bile acid composition in the liver and intestine, leading to notable decreases in the hydrophobicity index of bile acids, known to limit cholesterol and lipid absorption. In addition, INT-767 upregulated expression of liver p-AMPK, SIRT1, PGC-1α, and SIRT3, which are master regulators of mitochondrial function. Finally, we found INT-767 treatment reduced WD-induced dysbiosis of gut microbiota. Interestingly, the effects of INT-767 in attenuating NASH were absent in FXR-null mice, but still present in TGR5-null mice. Our findings support treatment and prevention protocols with the dual FXR-TGR5 agonist INT-767 arrest progression of WD-induced NASH in mice mediated by FXR-dependent, TGR5-independent mechanisms.


Asunto(s)
Diabetes Mellitus Tipo 2 , Enfermedad del Hígado Graso no Alcohólico , Animales , Masculino , Ratones , Ácidos y Sales Biliares , Colesterol/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Dieta Occidental , Ácidos Grasos , Fibrosis , Inflamación/complicaciones , Ratones Endogámicos C57BL , Ratones Noqueados , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
11.
Hepatology ; 73(5): 1855-1867, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-32767570

RESUMEN

BACKGROUND AND AIMS: The etiology of biliary atresia (BA) is not known and is likely multifactorial, including a genetic predisposition, a viral or environmental trigger, an aberrant autoimmune response targeting cholangiocytes, and unique susceptibilities of the neonatal bile ducts to injury. Damaged cholangiocytes may express neo self-antigens and elicit autoreactive T-cell-mediated inflammation and B-cell production of autoantibodies. The aim of this study was to discover autoantibodies in BA that correlated with outcomes. APPROACH AND RESULTS: An autoantigen microarray encompassing approximately 9,500 autoantigens was used to screen for serum immunoglobulin M (IgM) and immunoglobulin G (IgG) autoantibodies in patients with BA or other liver disease controls. Validation of candidate autoantibodies by enzyme-linked immunosorbent assay on a second cohort of subjects (6-12 months following Kasai portoenterostomy) and correlations of autoantibodies with outcomes were performed (serum bilirubin levels and need for liver transplant in first 2 years of life). Mean anti-chitinase 3-like 1 (CHI3L1), anti-delta-like ligand (DLL-4), and antisurfactant protein D (SFTPD) IgM autoantibodies in BA were significantly higher compared with controls, and IgM autoantibody levels positively correlated with worse outcomes. Immunofluorescence revealed cholangiocyte-predominant expression of CHI3L1, DLL-4, and SFTPD. The humoral autoantibody response was associated with C3d complement activation and T-cell autoimmunity, based on detection of cholangiocyte-predominant C3d co-staining and peripheral blood autoreactive T cells specific to CHI3L1, DLL-4 and SFTPD, respectively. CONCLUSIONS: BA is associated with cholangiocyte-predominant IgM autoantibodies in the first year after Kasai portoenterostomy. Anti-CHI3L1, anti-DLL-4, and anti-SFTPD IgM autoantibody correlations with worse outcomes and the detection of C3d on cholangioctyes and antigen-specific autoreactive T cells suggest that autoimmunity plays a role in the ongoing bile duct injury and progression of disease.


Asunto(s)
Autoanticuerpos/inmunología , Conductos Biliares Extrahepáticos/inmunología , Atresia Biliar/inmunología , Inmunoglobulina M/inmunología , Conductos Biliares Extrahepáticos/citología , Atresia Biliar/cirugía , Línea Celular , Preescolar , Progresión de la Enfermedad , Ensayo de Inmunoadsorción Enzimática , Femenino , Técnica del Anticuerpo Fluorescente , Humanos , Lactante , Masculino , Portoenterostomía Hepática
12.
J Mol Biol ; 432(10): 3137-3148, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32247761

RESUMEN

Bacterial motility is related to many cellular activities, such as cell migration, aggregation, and biofilm formations. The ability to control motility and direct the bacteria to certain location could be used to guide the bacteria in applications such as seeking for and killing pathogen, forming various population-level patterns, and delivering of drugs and vaccines. Currently, bacteria motility is mainly controlled by chemotaxis (prescribed chemical stimuli), which needs physical contact with the chemical inducer. This lacks the flexibility for pattern formation as it has limited spatial control. To overcome the limitations, we developed blue light-regulated synthetic genetic circuit to control bacterial directional motility, by taking the advantage that light stimulus can be delivered to cells in different patterns with precise spatial control. The circuit developed enables programmed Escherichia coli cells to increase directional motility and move away from the blue light, i.e., that negative phototaxis is utilized. This further allows the control of the cells to form aggregation with different patterns. Further, we showed that the circuit can be used to separate two different strains. The demonstrated ability of blue light-controllable gene circuits to regulate a CheZ expression could give researchers more means to control bacterial motility and pattern formation.


Asunto(s)
Escherichia coli/fisiología , Luz/efectos adversos , Proteínas Quimiotácticas Aceptoras de Metilo/genética , Fenómenos Fisiológicos Bacterianos/efectos de los fármacos , Quimiotaxis/efectos de los fármacos , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Regiones Promotoras Genéticas , Biología Sintética
13.
J Biol Chem ; 295(14): 4733-4747, 2020 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-32075905

RESUMEN

Nonalcoholic fatty liver disease is a rapidly rising problem in the 21st century and is a leading cause of chronic liver disease that can lead to end-stage liver diseases, including cirrhosis and hepatocellular cancer. Despite this rising epidemic, no pharmacological treatment has yet been established to treat this disease. The rapidly increasing prevalence of nonalcoholic fatty liver disease and its aggressive form, nonalcoholic steatohepatitis (NASH), requires novel therapeutic approaches to prevent disease progression. Alterations in microbiome dynamics and dysbiosis play an important role in liver disease and may represent targetable pathways to treat liver disorders. Improving microbiome properties or restoring normal bile acid metabolism may prevent or slow the progression of liver diseases such as NASH. Importantly, aberrant systemic circulation of bile acids can greatly disrupt metabolic homeostasis. Bile acid sequestrants are orally administered polymers that bind bile acids in the intestine, forming nonabsorbable complexes. Bile acid sequestrants interrupt intestinal reabsorption of bile acids, decreasing their circulating levels. We determined that treatment with the bile acid sequestrant sevelamer reversed the liver injury and prevented the progression of NASH, including steatosis, inflammation, and fibrosis in a Western diet-induced NASH mouse model. Metabolomics and microbiome analysis revealed that this beneficial effect is associated with changes in the microbiota population and bile acid composition, including reversing microbiota complexity in cecum by increasing Lactobacillus and decreased Desulfovibrio The net effect of these changes was improvement in liver function and markers of liver injury and the positive effects of reversal of insulin resistance.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Dieta Occidental , Hígado/efectos de los fármacos , Enfermedad del Hígado Graso no Alcohólico/patología , Sevelamer/farmacología , Animales , Ácidos y Sales Biliares/química , Ciego/microbiología , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Colesterol/análisis , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Cadena alfa 1 del Colágeno Tipo I , Modelos Animales de Enfermedad , Heces/química , Microbioma Gastrointestinal/efectos de los fármacos , Lactobacillus/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Sevelamer/química , Sevelamer/uso terapéutico , Índice de Severidad de la Enfermedad , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo
14.
J Zhejiang Univ Sci B ; 20(12): 972-982, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31749344

RESUMEN

As a crucial signaling molecule, calcium plays a critical role in many physiological and pathological processes by regulating ion channel activity. Recently, one study resolved the structure of the transient receptor potential melastatin 2 (TRPM2) channel from Nematostella vectensis (nvTRPM2). This identified a calcium-binding site in the S2-S3 loop, while its effect on channel gating remains unclear. Here, we investigated the role of this calcium-binding site in both nvTRPM2 and human TRPM2 (hTRPM2) by mutagenesis and patch-clamp recording. Unlike hTRPM2, nvTRPM2 cannot be activated by calcium alone. Moreover, the inactivation rate of nvTRPM2 was decreased as intracellular calcium concentration was increased. In addition, our results showed that the four key residues in the calcium-binding site of S2-S3 loop have similar effects on the gating processes of nvTRPM2 and hTRPM2. Among them, the mutations at negatively charged residues (glutamate and aspartate) substantially decreased the currents of nvTRPM2 and hTRPM2. This suggests that these sites are essential for calcium-dependent channel gating. For the charge-neutralizing residues (glutamine and asparagine) in the calcium-binding site, our data showed that glutamine mutating to alanine or glutamate did not affect the channel activity, but glutamine mutating to lysine caused loss of function. Asparagine mutating to aspartate still remained functional, while asparagine mutating to alanine or lysine led to little channel activity. These results suggest that the side chain of glutamine has a less contribution to channel gating than does asparagine. However, our data indicated that both glutamine mutating to alanine or glutamate and asparagine mutating to aspartate accelerated the channel inactivation rate, suggesting that the calcium-binding site in the S2-S3 loop is important for calcium-dependent channel inactivation. Taken together, our results uncovered the effect of four key residues in the S2-S3 loop of TRPM2 on the TRPM2 gating process.


Asunto(s)
Calcio/metabolismo , Activación del Canal Iónico/fisiología , Canales Catiónicos TRPM/fisiología , Animales , Asparagina/fisiología , Sitios de Unión , Glutamina/fisiología , Células HEK293 , Humanos , Anémonas de Mar , Canales Catiónicos TRPM/química
15.
Front Pharmacol ; 9: 581, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29915540

RESUMEN

As an oxidative stress sensor, transient receptor potential melastatin 2 (TRPM2) channel is involved in many physiological and pathological processes including warmth sensing, ischemia injury, inflammatory diseases and diabetes. Intracellular calcium is critical for TRPM2 channel activation and the IQ-like motif in the N-terminus has been shown to be important by mediating calmodulin binding. Sequence analysis predicted two potential EF-loops in the N-terminus of TRPM2. Site-directed mutagenesis combining with functional assay showed that substitution with alanine of several residues, most of which are conserved in the typical EF-loop, including D267, D278, D288, and E298 dramatically reduced TRPM2 channel currents. By further changing the charges or side chain length of these conserved residues, our results indicate that the negative charge of D267 and the side chain length of D278 are critical for calcium-induced TRPM2 channel activation. G272I mutation also dramatically reduced the channel currents, suggesting that this site is critical for calcium-induced TRPM2 channel activation. Furthermore, D267A mutant dramatically reduced the currents induced by calcium alone compared with that by ADPR, indicating that D267 residue in D267-D278 motif is the most important site for calcium sensitivity of TRPM2. In addition, inside-out recordings showed that mutations at D267, G272, D278, and E298 had no effect on single-channel conductance. Taken together, our data indicate that D267-D278 motif in the N-terminus as a novel EF-loop is critical for calcium-induced TRPM2 channel activation.

16.
Int J Mol Sci ; 19(1)2018 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-29301371

RESUMEN

Obesity and obesity related kidney and liver disease have become more prevalent over the past few decades, especially in the western world. Sodium-glucose cotransporter 2 (SGLT2) inhibitors are a new class of antidiabetic agents with promising effects on cardiovascular and renal function. Given SGLT2 inhibitors exert both anti-diabetic and anti-obesity effects by promoting urinary excretion of glucose and subsequent caloric loss, we investigated the effect of the highly selective renal SGLT2 inhibitor dapagliflozin in mice with Western diet (WD) induced obesity. Low fat (LF) diet or WD-fed male C57BL/6J mice were treated with dapagliflozin for 26 weeks. Dapagliflozin attenuated the WD-mediated increases in body weight, plasma glucose and plasma triglycerides. Treatment with dapagliflozin prevented podocyte injury, glomerular pathology and renal fibrosis determined by second harmonic generation (SHG), nephrin, synaptopodin, collagen IV, and fibronectin immunofluorescence microscopy. Oil Red O staining showed dapagliflozin also decreased renal lipid accumulation associated with decreased SREBP-1c mRNA abundance. Moreover, renal inflammation and oxidative stress were lower in the dapagliflozin-treated WD-fed mice than in the untreated WD-fed mice. In addition, dapagliflozin decreased serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST), hepatic lipid accumulation as determined by H&E and Oil Red O staining, and Coherent Anti-Stokes Raman Scattering (CARS) microscopy, and hepatic fibrosis as determined by picrosirius red (PSR) staining and TPE-SHG microscopy in WD-fed mice. Thus, our study demonstrated that the co-administration of the SGLT2 inhibitor dapagliflozin attenuates renal and liver disease during WD feeding of mice.


Asunto(s)
Compuestos de Bencidrilo/uso terapéutico , Glucósidos/uso terapéutico , Enfermedades Renales/prevención & control , Hepatopatías/prevención & control , Obesidad/tratamiento farmacológico , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Animales , Compuestos de Bencidrilo/farmacología , Glucemia/metabolismo , Dieta Occidental , Glucósidos/farmacología , Inflamación/complicaciones , Inflamación/patología , Resistencia a la Insulina , Enfermedades Renales/sangre , Enfermedades Renales/complicaciones , Enfermedades Renales/tratamiento farmacológico , Glomérulos Renales/efectos de los fármacos , Glomérulos Renales/patología , Lípidos/sangre , Hígado/efectos de los fármacos , Hígado/lesiones , Hígado/patología , Cirrosis Hepática/complicaciones , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/patología , Hepatopatías/sangre , Hepatopatías/complicaciones , Hepatopatías/tratamiento farmacológico , Masculino , Ratones Endogámicos C57BL , Ratones Obesos , Obesidad/sangre , Estrés Oxidativo/efectos de los fármacos , Aumento de Peso/efectos de los fármacos
17.
J Am Soc Nephrol ; 29(1): 118-137, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29089371

RESUMEN

Bile acids are ligands for the nuclear hormone receptor farnesoid X receptor (FXR) and the G protein-coupled receptor TGR5. We have shown that FXR and TGR5 have renoprotective roles in diabetes- and obesity-related kidney disease. Here, we determined whether these effects are mediated through differential or synergistic signaling pathways. We administered the FXR/TGR5 dual agonist INT-767 to DBA/2J mice with streptozotocin-induced diabetes, db/db mice with type 2 diabetes, and C57BL/6J mice with high-fat diet-induced obesity. We also examined the individual effects of the selective FXR agonist obeticholic acid (OCA) and the TGR5 agonist INT-777 in diabetic mice. The FXR agonist OCA and the TGR5 agonist INT-777 modulated distinct renal signaling pathways involved in the pathogenesis and treatment of diabetic nephropathy. Treatment of diabetic DBA/2J and db/db mice with the dual FXR/TGR5 agonist INT-767 improved proteinuria and prevented podocyte injury, mesangial expansion, and tubulointerstitial fibrosis. INT-767 exerted coordinated effects on multiple pathways, including stimulation of a signaling cascade involving AMP-activated protein kinase, sirtuin 1, PGC-1α, sirtuin 3, estrogen-related receptor-α, and Nrf-1; inhibition of endoplasmic reticulum stress; and inhibition of enhanced renal fatty acid and cholesterol metabolism. Additionally, in mice with diet-induced obesity, INT-767 prevented mitochondrial dysfunction and oxidative stress determined by fluorescence lifetime imaging of NADH and kidney fibrosis determined by second harmonic imaging microscopy. These results identify the renal signaling pathways regulated by FXR and TGR5, which may be promising targets for the treatment of nephropathy in diabetes and obesity.


Asunto(s)
Diabetes Mellitus Experimental/metabolismo , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/prevención & control , Túbulos Renales/patología , Obesidad/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/efectos de los fármacos , Albuminuria/etiología , Animales , Ácidos y Sales Biliares/farmacología , Ácido Quenodesoxicólico/análogos & derivados , Ácido Quenodesoxicólico/farmacología , Colesterol/metabolismo , Ácidos Cólicos/farmacología , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Tipo 2/metabolismo , Nefropatías Diabéticas/complicaciones , Nefropatías Diabéticas/patología , Progresión de la Enfermedad , Estrés del Retículo Endoplásmico , Fibrosis , Mesangio Glomerular/patología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Mitocondrias/metabolismo , Obesidad/complicaciones , Estrés Oxidativo , Podocitos/patología , ARN Mensajero/metabolismo , Receptores Citoplasmáticos y Nucleares/agonistas , Receptores Citoplasmáticos y Nucleares/genética , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/genética , Triglicéridos/metabolismo
18.
Sci Rep ; 7(1): 9793, 2017 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-28851937

RESUMEN

Serelaxin, a recombinant form of the naturally occurring peptide hormone relaxin-2, is a pleiotropic vasodilating hormone that has been studied in patients with acute heart failure. In this study, the effects of serelaxin on cardiac and renal function, fibrosis, inflammation and lipid accumulation were studied in DOCA-salt treated rats. Uninephrectomized rats were assigned to two groups: controls provided with normal drinking water and DOCA provided with DOCA pellets and sodium chloride drinking water. After 4 weeks, the DOCA-salt rats were randomly selected and implanted with osmotic minipumps delivering vehicle or serelaxin for another 4 weeks. Treatment with serelaxin prevented cardiac and renal dysfunction in DOCA-salt rats. Serelaxin prevented cardiac and renal fibrosis, as determined by Picrosirius Red staining and Second Harmonic Generation (SHG) Microscopy. Treatment of DOCA-salt rats with serelaxin decreased renal inflammation, including the expression of TGF-ß, NFκB, MCP-1, IL-1, IL-6, ICAM-1, VCAM-1 and CD68 macrophages. Serelaxin also decreased lipid accumulation in kidney in part by decreasing SREBP-1c, SREBP-2, ChREBP, FATP1, HMGCoAR, and LDL receptor, and increasing Acox1 and ABCA1. In summary, serelaxin reversed DOCA-salt induced cardiac and renal dysfunction.


Asunto(s)
Acetato de Desoxicorticosterona/efectos adversos , Corazón/efectos de los fármacos , Hipertensión/etiología , Hipertensión/fisiopatología , Riñón/efectos de los fármacos , Miocardio/metabolismo , Relaxina/farmacología , Animales , Biomarcadores , Presión Sanguínea/efectos de los fármacos , Electrocardiografía , Pruebas de Función Cardíaca , Hipertensión/diagnóstico , Hipertensión/tratamiento farmacológico , Riñón/metabolismo , Pruebas de Función Renal , Ratas , Proteínas Recombinantes/farmacología , Urinálisis
19.
Biomed Opt Express ; 8(7): 3143-3154, 2017 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-28717559

RESUMEN

The phasor approach to auto-fluorescence lifetime imaging was used to identify and characterize a long lifetime species (LLS) (~7.8 ns) in livers of mice fed with a Western diet. The size of the areas containing this LLS species depends on the type of diet and the size distribution shows Western diet has much larger LLS sizes. Combination of third harmonic generation images with FLIM identified the LLS species with fat droplets and the droplet size distribution was estimated. Second harmonic generation microscopy combined with phasor FLIM shows that there is an increase in fibrosis with a Western diet. A new decomposition in three components of the phasor plot shows that a Western diet is correlated with a higher fraction of free NADH, signifying more reducing condition and more glycolytic condition. Multiparametric analysis of phasor distribution shows that from the distribution of phasor points, a Western diet fed versus a low fat diet fed samples of mice livers can be separated. The phasor approach for the analysis of FLIM images of autofluorescence in liver specimens can result in discovery of new fluorescent species and then these new fluorescent species can help assess tissue architecture. Finally integrating FLIM and second and third harmonic analysis provides a measure of the advancement of fibrosis as an effect of diet.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...