Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
J Phycol ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38943258

RESUMEN

Cyanobacterial mats supplanting coral and spreading coral diseases in tropical reefs, intensified by environmental shifts caused by human-induced pressures, nutrient enrichment, and global climate change, pose grave risks to the survival of coral ecosystems. In this study, we characterized Okeanomitos corallinicola gen. and sp. nov., a newly discovered toxic marine heterocyte-forming cyanobacterium isolated from a coral reef ecosystem of the South China Sea. Phylogenetic analysis, based on the 16S rRNA gene and the secondary structure of the 16S-23S rRNA intergenic region, placed this species in a clade distinct from closely related genera, that is, Sphaerospermopsis stricto sensu, Raphidiopsis, and Amphiheterocytum. The O. corallinicola is a marine benthic species lacking gas vesicles, distinguishing it from other members of the Aphanizomenonaceae family. The genome of O. corallinicola is large and exhibits diverse functional capabilities, potentially contributing to the resilience and adaptability of coral reef ecosystems. In vitro assays revealed that O. corallinicola demonstrates notable cytotoxic activity against various cancer cell lines, suggesting its potential as a source of novel anticancer compounds. Furthermore, the identification of residual saxitoxin biosynthesis function in the genome of O. corallinicola, a marine cyanobacteria, supports the theory that saxitoxin genes in cyanobacteria and dinoflagellates may have been horizontally transferred between them or may have originated from a shared ancestor. Overall, the identification and characterization of O. corallinicola provides valuable contributions to cyanobacterial taxonomy, offering novel perspectives on complex interactions within coral reef ecosystems.

2.
Sci Total Environ ; 946: 174064, 2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38889812

RESUMEN

Microplastics (MPs) have drawn exponential attention as anthropogenic pollutants, which have invaded every corner of planet. Seamounts are prominent features of the deep-sea topography, acting as breeding ground for marine animal calves and hotspots of pelagic biodiversity, yet MPs pollution in seamounts is scarcely studied. We investigated the MPs load in the whole vertical profile of seamount ambient water in the Subtropical Northwest Pacific Ocean. Based on focal plane array Fourier Transform Infrared spectrometry, MPs were detected in all layers, and varied from 0.9 to 3.8 items L-1, PP and PE were dominant, PA and PET tended to gather at the seamount summit. With depth increasing, small MPs (20-50 µm) were dominant, and MPs surface roughness including crack, hole, and biofouling showed an increase. Three plastic-degrading bacteria were noted in the layers around the seamount, indicating that the seamount community may accelerate MPs aging and further migration. Our work first unveiled the MPs occurrence in the whole vertical profile of the seamount. It reveals that ocean MPs migration and degradation are significantly affected by the unique topography and biotopes of the seamount.

3.
Environ Res ; 252(Pt 4): 119090, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38719063

RESUMEN

The distribution and mechanisms of photosynthetically dissolved organic carbon (PDOC) released by marine phytoplankton are frequently neglected and inadequately understood because most studies on carbon sequestration capacity have focused on photosynthetic particulate organic carbon. In this study, percentage extracellular release (PER) and its environmental influencing factors were investigated for 10 cruises in the Taiwan Strait during 2006-2023. The results indicated that the PER increased horizontally from the nearshore to the off-shelf and vertically from the surface to the bottom within the euphotic zone. PER tends to be low in eutrophic waters such as upwellings and estuaries and high in oligotrophic waters. The study revealed that the average contribution of PDOC to total primary productivity (TPP) in the Taiwan Strait could reach 18.2 ± 11.7%, which is similar to the previously estimated global oceanic values. PDOC production satisfied approximately 25% the carbon requirements of heterotropic bacteria (HB). A detailed analysis of the PER combined with model simulations proved that the distribution of the PER in the Taiwan Strait was caused by the joint contribution of irradiance, size-fractionated phytoplankton, and nutrient stoichiometry. Our results contradict the view that the PER is a constant factor that is unaffected by TPP. However, there was a significant negative correlation between the PER and TPP. The PDOC was always lower than the bacterial carbon demand for a broad range of bacterial growth efficiencies, suggesting a weak coupling between phytoplankton exudation and bacterial metabolism. This challenges the idea that there is a well-coupled relationship between bacteria and phytoplankton present on the continental shelf. These findings indicate significant discrepancies in PDOC mechanisms and the quantitative importance of nearshore eutrophic and off-shelf oligotrophic environments. Consequently, it is unwise to use uniform PERs without differentiation under trophic conditions when reevaluating and appraising marine carbon fixation.


Asunto(s)
Carbono , Fotosíntesis , Fitoplancton , Fitoplancton/metabolismo , Carbono/metabolismo , Carbono/análisis , Taiwán , Agua de Mar/química , Agua de Mar/microbiología
4.
Mar Environ Res ; 193: 106261, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37981448

RESUMEN

Inter-oceanic scale studies allow us to understand the global spread of micro-organisms in marine ecosystems. In this study, micro-eukaryotic communities in marine surface sediment were collected from tropical to Arctic sites. We found that micro-eukaryotic generalists had much higher intraspecific variation than specialists which allow them to distribute more widely through higher spatiotemporal asynchrony and complementary niche preferences among conspecific taxa. Moreover, comparing to the host-associated protozoa and small metazoa, the algae and free-living protozoa with higher intraspecific variation allow them to have wider distribution ranges. Species abundance also played an important role in driving the distribution ranges of generalists and specialists. The generalists had important effects on regional α-diversity even at an inter-oceanic scale which led to the micro-eukaryotic species richness in polar sites to be mainly influenced by the regional generalists but not the local specialists. In particular, more than 97% of algal species in polar sites were shared with the tropical and subtropical sites (including toxic dinoflagellate). Overall, our study suggests that the effects of global change and human activities on the vulnerable high latitude habitats may lead to biotic homogenization for the whole microbial community (not only the dispersal of some harmful algae) through the potential long-distance spread of generalists.


Asunto(s)
Ecosistema , Microbiota , Humanos , Océanos y Mares , Plantas , Actividades Humanas
5.
Harmful Algae ; 129: 102515, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37951609

RESUMEN

A large-scale sampling was undertaken during a research cruise across the South China Sea in August 2016, covering an area of about 100,000 km2 to investigate the molecular diversity and distributions of micro-eukaryotic protists, with a focus on the potentially harmful microalgal (HAB) species along the east coast of Peninsular Malaysia. Environmental DNAs from 30 stations were extracted and DNA metabarcoding targeting the V4 and V9 markers in the 18S rDNA was performed. Many protistan molecular units, including previously unreported HAB taxa, were discovered for the first time in the water. Our findings also revealed interesting spatial distribution patterns, with a marked signal of compositional turnover between latitudinal regimes of water masses, where dinophytes and diatom compositions were among the most strongly enhanced at the fronts, leading to distinct niches. Our results further confirmed the widespread distribution of HAB species, such as the toxigenic Alexandrium tamiyavaichii and Pseudo-nitzschia species, and the fish-killing Margalefidinium polykrikoides and Karlodinium veneficum. The molecular information obtained from this study provides an updated HAB species inventory and a toolset that could facilitate existing HAB monitoring schemes in the region to better inform management decisions.


Asunto(s)
Diatomeas , Dinoflagelados , Microalgas , Animales , Floraciones de Algas Nocivas , Microalgas/genética , Dinoflagelados/genética , Diatomeas/genética , China , Agua
7.
Sci Rep ; 13(1): 3456, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36859411

RESUMEN

Many Artificial Reefs (ARs) have been used worldwide for marine habitat and coral reef restoration. However, the microbial community structure that colonize the ARs and their progressive development have been seldom investigated. In this study, the successive development of the microbial communities on environmentally friendly Artificial Biological Reef structures (ABRs)R made of special concrete supported with bioactive materials collected from marine algal sources were studied. Three seasons (spring, summer and autumn), three coral reef localities and control models (SCE) without bioactive material and (NCE) made of normal cement were compared. The structure of the microbial pattern exhibited successive shifts from the natural environment to the ABRs supported with bioactive materials (ABAM). Cyanobacteria, Proteobacteria, and Planctomycetota were shown to be the most three dominant phyla. Their relative abundances pointedly increased on ABAM and SCE models compared to the environment. Amplicon Sequence Variant (ASV) Richness and Shannon index were obviously higher on ABAM models and showed significant positive relationship with that of macrobenthos than those on the controls and the natural reef (XR). Our results offer successful establishment of healthy microbial films on the ABR surfaces enhanced the restoration of macrobenthic community in the damaged coral reefs which better understands the ecological role of the ABRs.


Asunto(s)
Cementos para Huesos , Microbiota , China , Arrecifes de Coral , Cementos de Ionómero Vítreo
8.
Environ Microbiol Rep ; 15(1): 13-30, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36054576

RESUMEN

Coral-bacterial interaction is a major driver in coral acclimatization to the stressful environment. 16S rRNA High-throughput sequencing was used to classify the role of different coral reef compartments; sediment, water, and tissue; in the South China Sea (SCS), as well as different locations in shaping the microbial community. The majority of OTUs significantly shifted at impacted sites and indicated distinction in the relative abundance of bacteria compartment/site-wise. Richness and diversity were higher, and more taxa were enriched in the sediment communities. Proteobacteria dominated sediment samples, while Cyanobacteria dominated water samples. Coral tissue showed a shift among different sites with Proteobacteria remaining the dominant Phylum. Moreover, we report a dominance of Chlorobium genus in the healthy coral tissue sample collected from the severely damaged Site B, suggesting a contribution to tolerance and adaptation to the disturbing environment. Thus, revealing the complex functionally diverse microbial patterns associated with biotic and abiotic disturbed coral reefs will deliver understanding of the symbiotic connections and competitive benefit inside the hosts niche and can reveal a measurable footprint of the environmental impacts on coral ecosystems. We hence, urge scientists to draw more attention towards using coral microbiome as a self-sustaining tool in coral restoration.


Asunto(s)
Antozoos , Microbiota , Animales , Arrecifes de Coral , Antozoos/microbiología , ARN Ribosómico 16S/genética , Microbiota/genética , Bacterias/genética , Proteobacteria/genética , China , Agua
9.
Harmful Algae ; 107: 102077, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34456026

RESUMEN

Coastal ecosystems are often subjected to anthropogenic disturbances that lead to water quality deterioration and an increase in harmful algal bloom (HAB) events. Using the next-generation molecular tool of 18S rDNA metabarcoding, we examined the community assemblages of HAB species in the Johor Strait, Malaysia between May 2018 and September 2019, covering 19 stations across the strait. The molecular operational taxonomic units (OTUs) of HAB taxa retrieved from the dataset (n = 194) revealed a much higher number of HAB taxa (26 OTUs) than before, with 12 taxa belong to new records in the strait. As revealed in the findings of this study, the diversity and community structure of HAB taxa varied significantly over time and space. The most common and abundant HAB taxa in the strait (frequency of occurrence >70%) comprised Heterosigma akashiwo, Fibrocapsa japonica, Pseudo-nitzschia pungens, Dinophysis spp., Gymnodinium catenatum, Alexandrium leei, and A. tamiyavanichii. Also, our results demonstrated that the HAB community assemblages in the strait were dependent on the interplay of environmental variables that influence by the monsoonal effects. Different HAB taxa, constitute various functional types, occupied and prevailed in different environmental niches across space and time, leading to diverse community assemblages and population density. This study adds to the current understandings of HAB dynamics and provides a robust overview of temporal-spatial changes in HAB community assemblages along the environmental gradients in a tropical eutrophic coastal ecosystem.


Asunto(s)
Dinoflagelados , Microalgas , Ecosistema , Floraciones de Algas Nocivas , Fitoplancton
10.
Harmful Algae ; 97: 101868, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32732054

RESUMEN

Gymnodinium catenatum is able to produce paralytic shellfish toxins (PSTs) and was responsible for a massive bloom in the Taiwan Strait, East China Sea, in June 2017, which resulted in serious human poisoning and economic losses. To understand the origin of the bloom and determine the potential for blooms in subsequent years, water and sediment samples collected in the Taiwan Strait from 2016 to 2019 were analyzed for cells and cysts using light microscopy (LM) and/or quantitative polymerase chain reaction (qPCR). The morphology of both cells and cysts from the field and cultures was examined with LM and scanning electron microscopy (SEM). Large subunit (LSU) and/or internal transcribed spacer (ITS)-5.8S rRNA gene sequences were obtained in 13 isolates from bloom samples and five strains from cysts. In addition, cells of strains TIO523 and GCLY02 (from the Taiwan Strait and Yellow Sea of China, respectively) were subjected to growth experiments, and cysts from the field were used for germination experiments under various temperatures. Our strains shared identical LSU and ITS-5.8S rRNA gene sequences with those from other parts of the world, and therefore belonged to a global population. A low abundance of G. catenatum cells were detected during most of the sampling period, but a small bloom was encountered in Quanzhou on June 8, 2018. Few cysts were observed in 2016 but a marked increase was observed after the bloom in 2017, with a highest density of 689 cysts cm-3. Cysts germinated at temperatures between 14 and 23 °C with a final germination rate over 93%. Strains TIO523 and GCLY02 displayed growth at temperatures between 17 and 26 °C and 14 and 26 °C, respectively, with both strains displaying the highest growth rate of ca. 0.5 divisions d-1 at 23 °C. The PSTs of the three strains and cysts from the sediments were analyzed by liquid chromatography with tandem mass spectrometry (LC-MS/MS). All strains were able to produce PSTs, which were dominated by N-sulfocarbamoyl C toxins (C1/2, 53.0-143.5 pg cell-1) and decarbamoyl gonyautoxins (dcGTX2/3, 26.7-52.1 pg cell-1), although they were not detected in cysts. However, hydroxybenzoyl (GC) toxins were detected in both cells and cysts. Our results suggested that the population in the Taiwan Strait belonged to a warm water ecotype and has a unique toxin profile. Our results also suggested that the persistence of cells in the water column may have initiated the bloom.


Asunto(s)
Dinoflagelados , Floraciones de Algas Nocivas , Cromatografía Liquida , Taiwán , Espectrometría de Masas en Tándem
11.
Harmful Algae ; 89: 101671, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31672230

RESUMEN

Species of the benthic dinoflagellate Gambierdiscus produce polyether neurotoxins that caused ciguatera fish/shellfish poisoning in human. The toxins enter marine food webs by foraging of herbivores on the biotic substrates like macroalgae that host the toxic dinoflagellates. Interaction of Gambierdiscus and their macroalgal substrate hosts is believed to shape the tendency of substrate preferences and habitat specialization. This was supported by studies that manifested epiphytic preferences and behaviors in Gambierdiscus species toward different macroalgal hosts. To further examine the supposition, a laboratory-based experimental study was conducted to examine the growth, epiphytic behaviors and host preferences of three Gambierdiscus species towards four macroalgal hosts over a culture period of 40 days. The dinoflagellates Gambierdiscus balechii, G. caribaeus, and a new ribotype, herein designated as Gambierdiscus type 7 were initially identified based on the thecal morphology and molecular characterization. Our results showed that Gambierdiscus species tested in this study exhibited higher growth rates in the presence of macroalgal hosts. Growth responses and attachment behaviors, however, differed among different species and strains of Gambierdiscus over different macroalgal substrate hosts. Cells of Gambierdiscus mostly attached to substrate hosts at the beginning of the experiments but detached at the later time. Localized Gambierdiscus-host interactions, as demonstrated in this study, could help to better inform efforts of sampling and monitoring of this benthic toxic dinoflagellate.


Asunto(s)
Intoxicación por Ciguatera , Dinoflagelados , Algas Marinas , Animales , Ecosistema , Filogenia
12.
Harmful Algae ; 88: 101610, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31582156

RESUMEN

The cosmopolitan, potentially toxic dinoflagellate Protoceratium reticulatum possesses a fossilizable cyst stage which is an important paleoenvironmental indicator. Slight differences in the internal transcribed spacer ribosomal DNA (ITS rDNA) sequences of P. reticulatum have been reported, and both the motile stage and cyst morphology of P. reticulatum display phenotypic plasticity, but how these morpho-molecular variations are related with ecophysiological preferences is unknown. Here, 55 single cysts or cells were isolated from localities in the Northern (Arctic to subtropics) and Southern Hemispheres (Chile and New Zealand), and in total 34 strains were established. Cysts and/or cells were examined with light microscopy and/or scanning electron microscopy. Large subunit ribosomal DNA (LSU rDNA) and/or ITS rDNA sequences were obtained for all strains/isolates. All strains/isolates of P. reticulatum shared identical LSU sequences except for one strain from the Mediterranean Sea that differs in one position, however ITS rDNA sequences displayed differences at eight positions. Molecular phylogeny was inferred using maximum likelihood and Bayesian inference based on ITS rDNA sequences. The results showed that P. reticulatum comprises at least three ribotypes (designated as A, B, and C). Ribotype A included strains from the Arctic and temperate areas, ribotype B included strains from temperate regions only, and ribotype C included strains from the subtropical and temperate areas. The average ratios of process length to cyst diameter of P. reticulatum ranged from 15% in ribotype A, 22% in ribotype B and 17% in ribotype C but cyst size could overlap. Theca morphology was indistinguishable among ribotypes. The ITS-2 secondary structures of ribotype A displayed one CBC (compensatory change on two sides of a helix pairing) compared to ribotypes B and C. Growth response of one strain from each ribotype to various temperatures was examined. The strains of ribotypes A, B and C exhibited optimum growth at 15 °C, 20 °C and 20-25 °C, respectively, thus corresponding to cold, moderate and warm ecotypes. The profiles of yessotoxins (YTXs) were examined for 25 strains using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). The parent compound yessotoxin (YTX) was produced by strains of ribotypes A and B, but not by ribotype C strains, which only produced the structural variant homoyessotoxin (homoYTX). Our results support the notion that there is significant intra-specific variability in Protoceratium reticulatum and the biogeography of the different ribotypes is consistent with specific ecological preferences.


Asunto(s)
Dinoflagelados , Toxinas Marinas , Regiones Árticas , Teorema de Bayes , Chile , Cromatografía Liquida , Mar Mediterráneo , Nueva Zelanda , Espectrometría de Masas en Tándem
13.
Harmful Algae ; 83: 95-108, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-31097256

RESUMEN

Thirteen isolates of Prorocentrum species were established from the coral reefs of Perhentian Islands Marine Park, Malaysia and underwent morphological observations and molecular characterization. Six species were found: P. caipirignum, P. concavum, P. cf. emarginatum, P. lima, P. mexicanum and a new morphotype, herein designated as P. malayense sp. nov. Prorocentrum malayense, a species closely related to P. leve, P. cf. foraminosum, P. sp. aff. foraminossum, and P. concavum (Clade A sensu Chomérat et al. 2018), is distinguished from its congeners as having larger thecal pore size and a more deeply excavated V-shaped periflagellar area. Platelet arrangement in the periflagellar area of P. malayense is unique, with the presence of platelet 1a and 1b, platelet 2 being the most anterior platelet, and a broad calabash-shaped platelet 3. The species exhibits consistent genetic sequence divergences for the nuclear-encoded large subunit ribosomal RNA gene (LSU rDNA) and the second internal transcribed spacer (ITS2). The phylogenetic inferences further confirmed that it represents an independent lineage, closely related to species in Clade A sensu Chomérat et al. Pairwise comparison of ITS2 transcripts with its closest relatives revealed the presence of compensatory base changes (CBCs). Toxicity analysis showed detectable levels of okadaic acid in P. lima (1.0-1.6 pg cell-1) and P. caipirignum (3.1 pg cell-1); this is the first report of toxigenic P. caipirignum in the Southeast Asian region. Other Prorocentrum species tested, including the new species, however, were below the detection limit.


Asunto(s)
Dinoflagelados , ADN Ribosómico , Islas , Malasia , Filogenia
14.
Harmful Algae ; 78: 75-85, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30196927

RESUMEN

The marine dinoflagellate Azadinium poporum produce azaspiracids (AZA) and has been recorded widely in the world. However, information on its biogeography is still limited, especially in view of the fact that A. poporum comprises several genetically differentiated groups. A total of 18 strains of A. poporum were obtained from the Eastern Mediterranean area by incubating surface sediment collected from Ionian Sea of Greece. The morphology of these strains was examined with light microscopy and scanning electron microscopy. Small subunit ribosomal DNA (SSU rDNA), large subunit ribosomal DNA (LSU rDNA) and internal transcribed spacer (ITS) sequences were obtained from all cultured strains. Molecular phylogeny based on concatenated SSU, LSU and ITS sequences confirmed three ribotypes within A. poporum and revealed two subclades within ribotypes A and C. Greek strains of A. poporum ribotype A were nested within ribotype A2 together with strains from Western Mediterranean Sea and French Atlantic, and Greek strains of A. poporum ribotype C were nested within ribotype C2 together with a strain from the Gulf of Mexico. Growth experiments on four selected strains revealed that ribotypes A and C from Greece differed in their growth at higher temperatures, indicating that they are physiologically differentiated. Azaspiracid profiles were analyzed for 15 cultured A. poporum strains using LCMS/MS and demonstrate that the A. poporum ribotype A from Greece produce low level or no AZA and A. poporum ribotype C from Greece produces predominantly AZA-40 (9.6-30.2 fg cell-1) followed by AZA-2 (2.1-2.6 fg cell-1). The first record of AZA-40 producing A. poporum from the Mediterranean suggests that this species is a potential source for azaspiracid contaminations in shellfish from the Eastern Mediterranean Sea.


Asunto(s)
Dinoflagelados/fisiología , Furanos/análisis , Toxinas Marinas/análisis , Piranos/análisis , Compuestos de Espiro/análisis , Cromatografía Liquida , Dinoflagelados/química , Grecia , Mar Mediterráneo , Ribotipificación , Simpatría/fisiología , Espectrometría de Masas en Tándem
15.
J Phycol ; 54(5): 744-761, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30144373

RESUMEN

The genus Gymnodinium includes many morphologically similar species, but molecular phylogenies show that it is polyphyletic. Eight strains of Gymnodinium impudicum, Gymnodinium dorsalisulcum and a novel Gymnodinium-like species from Chinese and Malaysian waters and the Mediterranean Sea were established. All of these strains were examined with light microscopy, scanning electron microscopy and transmission electron microscopy. SSU, LSU and internal transcribed spacers rDNA sequences were obtained. A new genus, Wangodinium, was erected to incorporate strains with a loop-shaped apical structure complex (ASC) comprising two rows of amphiesmal vesicles, here referred to as a new type of ASC. The chloroplasts of Wangodinium sinense are enveloped by two membranes. Pigment analysis shows that peridinin is the main accessory pigment in W. sinense. Wangodinium differs from other genera mainly in its unique ASC, and additionally differs from Gymnodinium in the absence of nuclear chambers, and from Lepidodinium in the absence of Chl b and nuclear chambers. New morphological information was provided for G. dorsalisulcum and G. impudicum, e.g., a short sulcal intrusion in G. dorsalisulcum; nuclear chambers in G. impudicum and G. dorsalisulcum; and a chloroplast enveloped by two membranes in G. impudicum. Molecular phylogeny was inferred using maximum likelihood and Bayesian inference with independent SSU and LSU rDNA sequences. Our results support the classification of Wangodinium within the Gymnodiniales sensu stricto clade and it is close to Lepidodinium. Our results also support the close relationship among G. dorsalisulcum, G. impudicum, and Barrufeta. Further research is needed to assign these Gymnodinium species to Barrufeta or to erect new genera.


Asunto(s)
Dinoflagelados/citología , Dinoflagelados/genética , Filogenia , China , Cloroplastos/ultraestructura , ADN de Algas/análisis , ADN Protozoario/análisis , ADN Ribosómico/análisis , Dinoflagelados/clasificación , Dinoflagelados/ultraestructura , Francia , Malasia , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión
16.
Harmful Algae ; 67: 107-118, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28755713

RESUMEN

Recent molecular phylogenetic studies of Gambierdiscus species flagged several new species and genotypes, thus leading to revitalizing its systematics. The inter-relationships of clades revealed by the primary sequence information of nuclear ribosomal genes (rDNA), however, can sometimes be equivocal, and therefore, in this study, the taxonomic status of a ribotype, Gambierdiscus sp. type 6, was evaluated using specimens collected from the original locality, Marakei Island, Republic of Kiribati; and specimens found in Rawa Island, Peninsular Malaysia, were further used for comparison. Morphologically, the ribotype cells resembled G. scabrosus, G. belizeanus, G. balechii, G. cheloniae and G. lapillus in thecal ornamentation, where the thecal surfaces are reticulate-foveated, but differed from G. scabrosus by its hatchet-shaped Plate 2', and G. belizeanus by the asymmetrical Plate 3'. To identify the phylogenetic relationship of this ribotype, a large dataset of the large subunit (LSU) and small subunit (SSU) rDNAs were compiled, and performed comprehensive analyses, using Bayesian-inference, maximum-parsimony, and maximum-likelihood, for the latter two incorporating the sequence-structure information of the SSU rDNA. Both the LSU and SSU rDNA phylogenetic trees displayed an identical topology and supported the hypothesis that the relationship between Gambierdiscus sp. type 6 and G. balechii was monophyletic. As a result, the taxonomic status of Gambierdiscus sp. type 6 was revised, and assigned as Gambierdiscus balechii. Toxicity analysis using neuroblastoma N2A assay confirmed that the Central Pacific strains were toxic, ranging from 1.1 to 19.9 fg P-CTX-1 eq cell-1, but no toxicity was detected in a Western Pacific strain. This suggested that the species might be one of the species contributing to the high incidence rate of ciguatera fish poisoning in Marakei Island.


Asunto(s)
Ciguatoxinas/toxicidad , Dinoflagelados/clasificación , Filogenia , Filogeografía , Secuencia de Bases , Tamaño de la Célula , ADN Ribosómico/química , ADN Ribosómico/genética , Dinoflagelados/citología , Dinoflagelados/ultraestructura , Funciones de Verosimilitud , Conformación de Ácido Nucleico
17.
Harmful Algae ; 66: 65-78, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28602255

RESUMEN

The marine planktonic dinophyceaen genus Azadinium is a primary source of azaspiracids, but due to their small size its diversity may be underestimated and information on its biogeography is still limited. A new Azadinium species, A. zhuanum was obtained from the East China Sea and Yellow Sea of China by incubating surface sediments. Five strains were established by isolating single germinated cells and their morphology was examined with light microscopy and scanning electron microscopy. Azadinium zhuanum was characterized by a plate pattern of Po, cp, X, 4', 2a, 6'', 6C, 5S, 6''', 2'''', by a distinct ventral pore at the junction of Po, the first and fourth apical plates, and a conspicuous antapical spine. Moreover, Azadinium poporum was obtained for the first time from the Mediterranean by incubating surface sediment collected from Diana Lagoon (Corsica) and a new strain of Azadinium dalianense was isolated from the French Atlantic. The morphology of both strains was examined. Small subunit ribosomal DNA (SSU rDNA), large subunit ribosomal DNA (LSU rDNA) and internal transcribed spacer (ITS) sequences were obtained from cultured strains. In addition, LSU sequences were obtained by single cell sequencing of two presumable A. poporum cells collected from the French Atlantic. Molecular phylogeny based on concatenated SSU, LSU and ITS sequences revealed that A. zhuanum was closest to A. polongum. French A. poporum from Corsica (Mediterranean) and from the Atlantic showed some genetic differences but were nested within one of the A. poporum ribotypes together with other European strains. Azadinium dalianense from France together with the type strain of the species from China comprised a well resolved clade now consisting of two ribotypes. Azaspiracid profiles were analyzed for the cultured Azadinium strains using LC-MS/MS and demonstrate that the Mediterranean A. poporum strain produced AZA-2 and AZA-2 phosphate with an amount of 0.44fgcell-1. Azadinium zhuanum and A. dalianense did not produce detectable AZA. Results of the present study support the view of a high diversity and wide distribution of species belonging to Azadinium. The first record of AZA-2 producing A. poporum from the Mediterranean suggests that this species may be responsible for azaspiracid contaminations in shellfish from the Mediterranean Sea.


Asunto(s)
Dinoflagelados/clasificación , Dinoflagelados/genética , Floraciones de Algas Nocivas , Toxinas Marinas/análisis , Compuestos de Espiro/análisis , Océano Atlántico , China , Cromatografía Liquida , ADN de Algas/análisis , ADN Intergénico/análisis , ADN Ribosómico/análisis , Dinoflagelados/química , Francia , Mar Mediterráneo , Filogenia , Análisis de Secuencia de ADN , Especificidad de la Especie , Espectrometría de Masas en Tándem
18.
Harmful Algae ; 66: 88-96, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28602257

RESUMEN

Blooms of the harmful dinoflagellate Akashiwo sanguinea are responsible for the mass mortality of fish and invertebrates in coastal waters. This cosmopolitan species includes several genetically differentiated clades. Four clonal cultures were established by isolating single cells from Xiamen Harbour (the East China Sea) for morphological and genetic analyses. The cultures displayed identical morphology but were genetically different, thus revealing presence of cryptic diversity in the study area. New details of the apical structure complex of Akashiwo sanguinea were also found. To investigate whether the observed cryptic diversity was related to environmental differentiation, 634 cells were obtained from seasonal water samples collected from 2008 to 2012. These cells were sequenced by single-cell PCR. For comparison with Chinese material, additional large subunit ribosomal DNA sequences were obtained for three established strains from Malaysian and French waters. To examine potential ecological differentiation of the distinct genotypes, growth responses of the studied strains were tested under laboratory conditions at temperatures of 12°C to 33°C. These experiments showed four distinct ribotypes of A. sanguinea globally, with the ribotypes A and B co-occuring in Xiamen Harbour. Ribotype A of A. sanguinea was present year-round in Xiamen Harbour, but it only bloomed in the winter and spring, thus corresponding to the winter type. In contrast, A. sanguinea ribotype B bloomed only in the summer, corresponding to the summer type. This differentiation supports the temperature optimum conditions that were established for these two ribotypes in the laboratory. Ribotype A grew better at lower temperatures compared to ribotype B which preferred higher temperatures. These findings support the idea that various ribotypes of A. sanguinea correspond to distinct ecotypes and allopatric speciation occurred in different climatic regions followed by dispersal.


Asunto(s)
Dinoflagelados/citología , Dinoflagelados/fisiología , Ecosistema , China , ADN de Algas/análisis , ADN Protozoario/análisis , Dinoflagelados/genética , Dinoflagelados/ultraestructura , Microscopía , Microscopía Electrónica de Rastreo , Filogenia , Ribotipificación , Agua de Mar/parasitología , Análisis de Secuencia de ADN
19.
Harmful Algae ; 55: 56-65, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-28073547

RESUMEN

Azadinium poporum produces a variety of azaspiracids and consists of several ribotypes, but information on its biogeography is limited. A strain of A. poporum (GM29) was incubated from a Gulf of Mexico sediment sample. Strain GM29 was characterized by a plate pattern of po, cp, x, 4', 3a, 6″, 6C, 5S, 6‴, 2⁗, a distinct ventral pore at the junction of po and the first two apical plates, and a lack of an antapical spine, thus fitting the original description of A. poporum. The genus Azadinium has not been reported in waters of the United States of America before this study. Molecular phylogeny, based on large subunit ribosomal DNA (LSU rDNA) and internal transcribed spacer (ITS) sequences, reveals that strain GM29 is nested within the well-resolved A. poporum complex, but forms a sister clade either to ribotype B (ITS) or ribotype C (LSU). It is, therefore, designated as a new ribotype, termed as ribotype D. LSU and ITS sequences similarity among different ribotypes of A. poporum ranges from 95.4% to 98.2%, and from 97.1% to 99.2% respectively, suggesting that the LSU fragment is a better candidate for molecular discrimination. Azaspiracid profiles were analyzed using LC-MS/MS and demonstrate that strain GM29 produces predominantly AZA-2 with an amount of 45fg/cell. The results suggest that A. poporum has a wide distribution and highlights the risk potential of azaspiracid intoxication in the United States.


Asunto(s)
Dinoflagelados , Toxinas Marinas/química , Filogenia , Compuestos de Espiro/química , ADN Ribosómico/genética , ADN Espaciador Ribosómico/genética , Dinoflagelados/química , Dinoflagelados/clasificación , Dinoflagelados/citología , Dinoflagelados/genética , Golfo de México , Análisis de Secuencia de ADN
20.
J Phycol ; 51(5): 990-9, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26986893

RESUMEN

In the present study, we redescribed Gyrodinium resplendens through incubation of process bearing cysts extracted from sediment collected in the northern Gulf of Mexico. The morphology and ultrastructure of the motile stage and cyst stage were examined using light microscopy, scanning electron microscopy, and transmission electron microscopy and this revealed that the species should be transferred to the genus Barrufeta. This genus differs from other gymnodinioid genera in possessing a Smurf-cap apical structure complex (ASC) and currently encompasses only one species, Barrufeta bravensis. B. resplendens shows a Smurf-cap ASC that consists of three rows of elongated vesicles with small knobs in the middle one. B. resplendens is very similar to B. bravensis in cell morphology, but can be separated using the ultrastructure such as the shape and location of nucleus and pyrenoids, which highlights the importance of ultrastructure at inter-specific level in the genus Barrufeta. The unique cysts of B. resplendens are brown and process bearing, and have a tremic archeopyle with a zigzag margin on the dorsal side of the epicyst, and not polar as in cysts of Polykrikos. The cysts do not survive the palynological treatment used here and probably have a wide distribution. Maximum-likelihood and Bayesian inference were carried out based on partial large subunit ribosomal DNA (LSU rDNA) sequences. Molecular phylogeny supports that the genus Barrufeta is monophyletic, and that the genus Gymnodinium is polyphyletic. Our results suggest that details of the ASC together with ultrastructure are potential features to subdivide the genus Gymnodinium.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...