Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 677(Pt A): 459-469, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39098279

RESUMEN

High working voltage, large theoretical capacity and cheapness render Mn3O4 promising cathode candidate for aqueous zinc ion batteries (AZIBs). Unfortunately, poor electrochemical activity and bad structural stability lead to low capacity and unsatisfactory cycling performance. Herein, Mn3O4 material was fabricated through a facile precipitation reaction and divalent copper ions were introduced into the crystal framework, and ultra-small Cu-doped Mn3O4 nanocrystalline cathode materials with mixed valence states of Mn2+, Mn3+ and Mn4+ were obtained via post-calcination. The presence of Cu acts as structural stabilizer by partial substitution of Mn, as well as enhance the conductivity and reactivity of Mn3O4. Significantly, based on electrochemical investigations and ex-situ XPS characterization, a synergistic effect between copper and manganese was revealed in the Cu-doped Mn3O4, in which divalent Cu2+ can catalyze the transformation of Mn3+ and Mn4+ to divalent Mn2+, accompanied by the translation of Cu2+ to Cu0 and Cu+. Benefitting from the above advantages, the Mn3O4 cathode doped with moderate copper (abbreviated as CMO-2) delivers large discharge capacity of 352.9 mAh g-1 at 100 mA g-1, which is significantly better than Mn3O4 (only 247.8 mAh g-1). In addition, CMO-2 holds 203.3 mAh g-1 discharge capacity after 1000 cycles at 1 A g-1 with 98.6 % retention, and after 1000 cycles at 5 A g-1, it still performs decent discharge capacity of 104.2 mAh g-1. This work provides new ideas and approaches for constructing manganese-based AZIBs with long lifespan and high capacity.

2.
J Hazard Mater ; 476: 135017, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38936185

RESUMEN

Biodegradation stands as an eco-friendly and effective approach for organic contaminant remediation. However, research on microorganisms degrading sodium benzoate contaminants in extreme environments remains limited. In this study, we report to display the isolation of a novel hot spring enriched cultures with sodium benzoate (400 mg/L) as the sole carbon source. The results revealed that the phylum Pseudomonadota was the potential sodium benzoate degrader and a novel genus within the family Geminicoccaceae of this phylum. The isolated strain was named Benzoatithermus flavus SYSU G07066T and was isolated from HNT-2 hot spring samples. Genomic analysis revealed that SYSU G07066T carried benABC genes and physiological experiments indicated the ability to utilize sodium benzoate as a sole carbon source for growth, which was further confirmed by transcriptomic data with expression of benABC. Phylogenetic analysis suggested that Horizontal Gene Transfer (HGT) plays a significant role in acquiring sodium benzoate degradation capability among prokaryotes, and SYSU G07066T might have acquired benABC genes through HGT from the family Acetobacteraceae. The discovery of the first microorganism with sodium benzoate degradation function from a hot spring enhances our understanding of the diverse functions within the family Geminicoccaceae. This study unearths the first novel genus capable of efficiently degrading sodium benzoate and its evolution history at high temperatures, holding promising industrial applications, and provides a new perspective for further exploring the application potential of hot spring "microbial dark matter".


Asunto(s)
Biodegradación Ambiental , Manantiales de Aguas Termales , Filogenia , Benzoato de Sodio , Benzoato de Sodio/metabolismo , Manantiales de Aguas Termales/microbiología , Contaminantes Químicos del Agua/metabolismo , Multiómica
3.
Curr Microbiol ; 81(7): 216, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38850425

RESUMEN

Haloferax and Halobellus are the representatives of the family Haloferacaceae and they are dominant in hypersaline ecosystems. Some Haloferax and Halobellus species exhibit a close evolutionary relationship. Genomic, phylogenetic (based on 16S rRNA gene sequence), and phylogenomic analysis were performed to evaluate the taxonomic positions of the genera Haloferax and Halobellus. Based on the results we propose to reclassify Halobellus ramosii as a later heterotypic synonym of Halobellus inordinatus; Haloferax lucentense and Haloferax alexandrinum as later heterotypic synonyms of Haloferax volcanii.


Asunto(s)
Filogenia , ARN Ribosómico 16S , ARN Ribosómico 16S/genética , Haloferax/genética , Haloferax/clasificación , Análisis de Secuencia de ADN , ADN de Archaea/genética , ADN de Archaea/química
4.
ISME J ; 18(1)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38365241

RESUMEN

Ammonia-oxidizing Nitrososphaeria are among the most abundant archaea on Earth and have profound impacts on the biogeochemical cycles of carbon and nitrogen. In contrast to these well-studied ammonia-oxidizing archaea (AOA), deep-branching non-AOA within this class remain poorly characterized because of a low number of genome representatives. Here, we reconstructed 128 Nitrososphaeria metagenome-assembled genomes from acid mine drainage and hot spring sediment metagenomes. Comparative genomics revealed that extant non-AOA are functionally diverse, with capacity for carbon fixation, carbon monoxide oxidation, methanogenesis, and respiratory pathways including oxygen, nitrate, sulfur, or sulfate, as potential terminal electron acceptors. Despite their diverse anaerobic pathways, evolutionary history inference suggested that the common ancestor of Nitrososphaeria was likely an aerobic thermophile. We further surmise that the functional differentiation of Nitrososphaeria was primarily shaped by oxygen, pH, and temperature, with the acquisition of pathways for carbon, nitrogen, and sulfur metabolism. Our study provides a more holistic and less biased understanding of the diversity, ecology, and deep evolution of the globally abundant Nitrososphaeria.


Asunto(s)
Amoníaco , Archaea , Amoníaco/metabolismo , Temperatura , Archaea/genética , Archaea/metabolismo , Oxidación-Reducción , Nitrógeno/metabolismo , Azufre/metabolismo , Concentración de Iones de Hidrógeno , Filogenia
5.
NPJ Biofilms Microbiomes ; 9(1): 21, 2023 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-37085482

RESUMEN

Wild animals may encounter multiple challenges especially food shortage and altered diet composition in their suboptimal ranges. Yet, how the gut microbiome responds to dietary changes remains poorly understood. Prior studies on wild animal microbiomes have typically leaned upon relatively coarse dietary records and individually unresolved fecal samples. Here, we conducted a longitudinal study integrating 514 time-series individually recognized fecal samples with parallel fine-grained dietary data from two Skywalker hoolock gibbon (Hoolock tianxing) groups populating high-altitude mountainous forests in western Yunnan Province, China. 16S rRNA gene amplicon sequencing showed a remarkable seasonal fluctuation in the gibbons' gut microbial community structure both across individuals and between the social groups, especially driven by the relative abundances of Lanchnospiraceae and Oscillospiraceae associated with fluctuating consumption of leaf. Metagenomic functional profiling revealed that diverse metabolisms associated with cellulose degradation and short-chain fatty acids (SCFAs) production were enriched in the high-leaf periods possibly to compensate for energy intake. Genome-resolved metagenomics further enabled the resolving metabolic capacities associated with carbohydrate breakdown among community members which exhibited a high degree of functional redundancy. Our results highlight a taxonomically and functionally sensitive gut microbiome actively responding to the seasonally shifting diet, facilitating the survival and reproduction of the endangered gibbon species in their suboptimal habitats.


Asunto(s)
Microbioma Gastrointestinal , Hylobates , Animales , Estaciones del Año , ARN Ribosómico 16S/genética , Estudios Longitudinales , China , Dieta
6.
Plants (Basel) ; 12(6)2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36987094

RESUMEN

Understanding the mechanisms of biological invasion is critical to biodiversity protection. Previous studies have produced inconsistent relationships between native species richness and invasibility, referred to as the invasion paradox. Although facilitative interactions among species have been proposed to explain the non-negative diversity-invasibility relationship, little is known about the facilitation of plant-associated microbes in invasions. We established a two-year field biodiversity experiment with a native plant species richness gradient (1, 2, 4, or 8 species) and analyzed the effects of community structure and network complexity of leaf bacteria on invasion success. Our results indicated a positive relationship between invasibility and network complexity of leaf bacteria of the invader. Consistent with previous studies, we also found that native plant species richness increased the leaf bacterial diversity and network complexity. Moreover, the results of the leaf bacteria community assembly of the invader suggested that the complex bacteria community resulted from higher native diversity rather than higher invader biomass. We concluded that increased leaf bacterial network complexity along the native plant diversity gradient likely facilitated plant invasion. Our findings provided evidence of a potential mechanism by which microbes may affect the plant community invasibility, hopefully helping to explain the non-negative relationship between native diversity and invasibility.

7.
J Hazard Mater ; 447: 130774, 2023 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-36641850

RESUMEN

Acid mine drainage (AMD) is a worldwide environmental problem, yet bioremediation is hampered by a limited knowledge of the reductive microbial processes in the AMD ecosystem. Here, we generate extensive metagenome and geochemical datasets to investigate how microbial populations and metabolic capacities driving major element cycles are structured in a highly stratified, AMD overlaying tailings environment. The results demonstrated an explicit depth-dependent differentiation of microbial community composition and function profiles between the surface and deeper tailings layers, paralleling the dramatic shifts in major physical and geochemical properties. Specifically, key genes involved in sulfur and iron oxidation were significantly enriched in the surface tailings, whereas those associated with reductive nitrogen, sulfur, and iron processes were enriched in the deeper layers. Genome-resolved metagenomics retrieved 406 intermediate or high-quality genomes spanning 26 phyla, including major new groups (e.g., Patescibacteria and DPANN). Metabolic models involving nitrogen, sulfur, iron, and carbon cycles were proposed based on the functional potentials of the abundant microbial genomes, emphasizing syntrophy and the importance of lesser-known taxa in the degradation of complex carbon compounds. These results have implications for in situ AMD bioremediation.


Asunto(s)
Metagenómica , Microbiota , Ácidos , Hierro , Metagenoma , Nitrógeno/metabolismo , Azufre
8.
mSystems ; 8(1): e0073622, 2023 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-36507660

RESUMEN

Methylmercury (MeHg) is a notorious neurotoxin, and its production and degradation in the environment are mainly driven by microorganisms. A variety of microbial MeHg producers carrying the gene pair hgcAB and degraders carrying the merB gene have been separately reported in recent studies. However, surprisingly little attention has been paid to the simultaneous investigation of the diversities of microbial MeHg producers and degraders in a given habitat, and no studies have been performed to explore to what extent these two contrasting microbial groups correlate with MeHg accumulation in the habitat of interest. Here, we collected 86 acid mine drainage (AMD) sediments from an area spanning approximately 500,000 km2 in southern China and profiled the sediment-borne putative MeHg producers and degraders using genome-resolved metagenomics. 46 metagenome-assembled genomes (MAGs) containing hgcAB and 93 MAGs containing merB were obtained, including those from various taxa without previously known MeHg-metabolizing microorganisms. These diverse MeHg-metabolizing MAGs were formed largely via multiple independent horizontal gene transfer (HGT) events. The putative MeHg producers from Deltaproteobacteria and Firmicutes as well as MeHg degraders from Acidithiobacillia were closely correlated with MeHg accumulation in the sediments. Furthermore, these three taxa, in combination with two abiotic factors, explained over 60% of the variance in MeHg accumulation. Most of the members of these taxa were characterized by their metabolic potential for nitrogen fixation and copper tolerance. Overall, these findings improve our understanding of the ecology of MeHg-metabolizing microorganisms and likely have implications for the development of management strategies for the reduction of MeHg accumulation in the AMD sediments. IMPORTANCE Microorganisms are the main drivers of MeHg production and degradation in the environment. However, little attention has been paid to the simultaneous investigation of the diversities of microbial MeHg producers and degraders in a given habitat. We used genome-resolved metagenomics to reveal the vast phylogenetic and metabolic diversities of putative MeHg producers and degraders in AMD sediments. Our results show that the diversity of MeHg-metabolizing microorganisms (particularly MeHg degraders) in AMD sediments is much higher than was previously recognized. Via multiple linear regression analysis, we identified both microbial and abiotic factors affecting MeHg accumulation in AMD sediments. Despite their great diversity, only a few taxa of MeHg-metabolizing microorganisms were closely correlated with MeHg accumulation. This work underscores the importance of using genome-resolved metagenomics to survey MeHg-metabolizing microorganisms and provides a framework for the illumination of the microbial basis of MeHg accumulation via the characterization of physicochemical properties, MeHg-metabolizing microorganisms, and the correlations between them.


Asunto(s)
Compuestos de Metilmercurio , Compuestos de Metilmercurio/análisis , Bacterias/genética , Filogenia , Metagenoma , Firmicutes/genética
9.
Microbiome ; 10(1): 172, 2022 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-36242054

RESUMEN

BACKGROUND: Candidatus Nanohaloarchaeota, an archaeal phylum within the DPANN superphylum, is characterized by limited metabolic capabilities and limited phylogenetic diversity and until recently has been considered to exclusively inhabit hypersaline environments due to an obligate association with Halobacteria. Aside from hypersaline environments, Ca. Nanohaloarchaeota can also have been discovered from deep-subsurface marine sediments. RESULTS: Three metagenome-assembled genomes (MAGs) representing a new order within the Ca. Nanohaloarchaeota were reconstructed from a stratified salt crust and proposed to represent a novel order, Nucleotidisoterales. Genomic features reveal them to be anaerobes capable of catabolizing nucleotides by coupling nucleotide salvage pathways with lower glycolysis to yield free energy. Comparative genomics demonstrated that these and other Ca. Nanohaloarchaeota inhabiting saline habitats use a "salt-in" strategy to maintain osmotic pressure based on the high proportion of acidic amino acids. In contrast, previously described Ca. Nanohaloarchaeota MAGs from geothermal environments were enriched with basic amino acids to counter heat stress. Evolutionary history reconstruction revealed that functional differentiation of energy conservation strategies drove diversification within Ca. Nanohaloarchaeota, further leading to shifts in the catabolic strategy from nucleotide degradation within deeper lineages to polysaccharide degradation within shallow lineages. CONCLUSIONS: This study provides deeper insight into the ecological functions and evolution of the expanded phylum Ca. Nanohaloarchaeota and further advances our understanding on the functional and genetic associations between potential symbionts and hosts. Video Abstract.


Asunto(s)
Archaea , Euryarchaeota , Aminoácidos Acídicos/genética , Aminoácidos Acídicos/metabolismo , Aminoácidos Básicos/genética , Aminoácidos Básicos/metabolismo , Euryarchaeota/genética , Metagenoma , Nucleótidos/metabolismo , Filogenia , Polisacáridos/metabolismo
10.
ISME J ; 16(9): 2099-2113, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35688988

RESUMEN

Mining is among the human activities with widest environmental impacts, and mining-impacted environments are characterized by high levels of metals that can co-select for antibiotic resistance genes (ARGs) in microorganisms. However, ARGs in mining-impacted environments are still poorly understood. Here, we conducted a comprehensive study of ARGs in such environments worldwide, taking advantage of 272 metagenomes generated from a global-scale data collection and two national sampling efforts in China. The average total abundance of the ARGs in globally distributed studied mine sites was 1572 times per gigabase, being rivaling that of urban sewage but much higher than that of freshwater sediments. Multidrug resistance genes accounted for 40% of the total ARG abundance, tended to co-occur with multimetal resistance genes, and were highly mobile (e.g. on average 16% occurring on plasmids). Among the 1848 high-quality metagenome-assembled genomes (MAGs), 85% carried at least one multidrug resistance gene plus one multimetal resistance gene. These high-quality ARG-carrying MAGs considerably expanded the phylogenetic diversity of ARG hosts, providing the first representatives of ARG-carrying MAGs for the Archaea domain and three bacterial phyla. Moreover, 54 high-quality ARG-carrying MAGs were identified as potential pathogens. Our findings suggest that mining-impacted environments worldwide are underexplored hotspots of multidrug resistance genes.


Asunto(s)
Resistencia a Múltiples Medicamentos , Genes Bacterianos , Genes MDR , Minería , Antibacterianos/farmacología , Farmacorresistencia Microbiana/genética , Resistencia a Múltiples Medicamentos/genética , Humanos , Metagenoma , Filogenia
11.
Antonie Van Leeuwenhoek ; 115(7): 889-898, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35562517

RESUMEN

A thermophilic bacterium, designated strain SYSU G04325T, was isolated from a hot spring sediment in Yunnan, China. Polyphasic taxonomic analyses and whole-genome sequencing were used to determine the taxonomic position of the strain. Phylogenetic analysis using 16S rRNA gene sequences indicated that strain SYSU G04325T shows high sequence similarity to Thermoflexibacter ruber NBRC 16677T (86.2%). The strain can be differentiated from other species of the family Thermoflexibacteraceae by its distinct phenotypic and genotypic characteristics. Cells of the strain SYSU G04325T were observed to be aerobic, Gram-stain negative and filamentous. Growth was found to occur optimally at 45 ºC and pH 7.0. In addition, the respiratory quinone was identified as menaquinone-7, while the major fatty acids (> 10%) were identified as iso-C15:0, iso-C17:0 and Summed Feature 9 (iso-C17:1ω9c). The polar lipids detected included phosphatidylethanolamine, three unidentified phospholipids, one unidentified glycolipid, five unidentified aminolipids and four unidentified polar lipids. The G + C content of the genomic DNA was determined to be 47.6% based on the draft genome sequence. On the basis of phenotypic, genotypic and phylogenetic data, strain SYSU G04325T is concluded to represent a novel species of a novel genus in the family Thermoflexibacteraceae, for which the name Rhodoflexus caldus gen. nov., sp. nov. is proposed. The type strain of Rhodoflexus caldus is SYSU G04325T (= MCCC 1K06127T = KCTC 82848T).


Asunto(s)
Manantiales de Aguas Termales , Técnicas de Tipificación Bacteriana , China , ADN Bacteriano/genética , Ácidos Grasos/química , Manantiales de Aguas Termales/microbiología , Fosfolípidos/química , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
12.
Environ Res ; 209: 112888, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35143804

RESUMEN

Chloroflexi members are ubiquitous and have been extensively studied; however, the evolution and metabolic pathways of Chloroflexi members have long been debated. In the present study, the evolution and the metabolic potentials of 17 newly obtained Chloroflexi metagenome-assembled genomes (MAGs) were evaluated using genome and horizontal gene transfer (HGT) analysis. Taxonomic analysis suggests that the MAGs of the present study might be novel. One MAG encodes genes for anoxygenic phototrophy. The HGT analysis suggest that genes responsible for anoxygenic phototrophy in the MAG might have been transferred from Proteobacteria/Chlorobi. The evolution of anaerobic photosynthesis, which has long been questioned, has now been shown to be the result of HGT events. An incomplete Wood-Ljungdahl pathway (with missing genes metF, acsE, fdh, and acsA) was reported in Dehalococcoidetes members. In the present study, MAGs that were not the Dehalococcoidetes members encode genes acsA, acsB, metF and acsE. The genes responsible for sulfate reduction (sat, cysC and sir), dissimilatory sulfite reductase (dsrA and dsrB), and aerobic and anaerobic carbon monoxide oxidation (coxSML and cooSF) were detected in the present study MAGs. The present study expands our knowledge of the possible metabolic potentials of the phylum Chloroflexi and clarifies the evolution of anaerobic photosynthesis.


Asunto(s)
Chloroflexi , Chloroflexi/genética , Chloroflexi/metabolismo , Redes y Vías Metabólicas , Metagenoma , Metagenómica , Filogenia
13.
Front Microbiol ; 12: 627200, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33763045

RESUMEN

In the present study, physicochemical and microbial diversity analyses of seven Indian hot springs were performed. The temperature at the sample sites ranged from 32 to 67°C, and pH remained neutral to slightly alkaline. pH and temperature influenced microbial diversity. Culture-independent microbial diversity analysis suggested bacteria as the dominant group (99.3%) when compared with the archaeal group (0.7%). Alpha diversity analysis showed that microbial richness decreased with the increase of temperature, and beta diversity analysis showed clustering based on location. A total of 131 strains (divided into 12 genera and four phyla) were isolated from the hot spring samples. Incubation temperatures of 37 and 45°C and T5 medium were more suitable for bacterial isolation. Some of the isolated strains shared low 16S rRNA gene sequence similarity, suggesting that they may be novel bacterial candidates. Some strains produced thermostable enzymes. Dominant microbial communities were found to be different depending on the culture-dependent and culture-independent methods. Such differences could be attributed to the fact that most microbes in the studied samples were not cultivable under laboratory conditions. Culture-dependent and culture-independent microbial diversities suggest that these springs not only harbor novel microbial candidates but also produce thermostable enzymes, and hence, appropriate methods should be developed to isolate the uncultivated microbial taxa.

14.
Front Microbiol ; 11: 608832, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33488549

RESUMEN

"Candidatus Nitrosocaldaceae" are globally distributed in neutral or slightly alkaline hot springs and geothermally heated soils. Despite their essential role in the nitrogen cycle in high-temperature ecosystems, they remain poorly understood because they have never been isolated in pure culture, and very few genomes are available. In the present study, a metagenomics approach was employed to obtain "Ca. Nitrosocaldaceae" metagenomic-assembled genomes (MAGs) from hot spring samples collected from India and China. Phylogenomic analysis placed these MAGs within "Ca. Nitrosocaldaceae." Average nucleotide identity and average amino acid identity analysis suggested the new MAGs represent two novel species of "Candidatus Nitrosocaldus" and a novel genus, herein proposed as "Candidatus Nitrosothermus." Key genes responsible for chemolithotrophic ammonia oxidation and a thaumarchaeal 3HP/4HB cycle were detected in all MAGs. Furthermore, genes coding for urea degradation were only present in "Ca. Nitrosocaldus," while biosynthesis of the vitamins, biotin, cobalamin, and riboflavin were detected in almost all MAGs. Comparison of "Ca. Nitrosocaldales/Nitrosocaldaceae" with other AOA revealed 526 specific orthogroups. This included genes related to thermal adaptation (cyclic 2,3-diphosphoglycerate, and S-adenosylmethionine decarboxylase), indicating their importance for life at high temperature. In addition, these MAGs acquired genes from members from archaea (Crenarchaeota) and bacteria (Firmicutes), mainly involved in metabolism and stress responses, which might play a role to allow this group to adapt to thermal habitats.

15.
Front Microbiol ; 11: 612257, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33408709

RESUMEN

Recent genome-resolved metagenomic analyses of microbial communities from diverse environments have led to the discovery of many novel lineages that significantly expand the phylogenetic breadth of Archaea. Here, we report the genomic characterization of a new archaeal family based on five metagenome-assembled genomes retrieved from acid mine drainage sediments. Phylogenomic analyses placed these uncultivated archaea at the root of the candidate phylum Parvarchaeota, which expand this lesser-known phylum into two family levels. Genes involved in environmental adaptation and carbohydrate and protein utilization were identified in the ultra-small genomes (estimated size 0.53-0.76 Mb), indicating a survival strategy in this harsh environment (low pH and high heavy metal content). The detection of genes with homology to sulfocyanin suggested a potential involvement in iron cycling. Nevertheless, the absence of the ability to synthesize amino acids and nucleotides implies that these archaea may acquire these biomolecules from the environment or other community members. Applying evolutionary history analysis to Parvarchaeota suggested that members of the two families could broaden their niches by acquiring the potentials of utilizing different substrates. This study expands our knowledge of the diversity, metabolic capacity, and evolutionary history of the Parvarchaeota.

16.
ISME J ; 12(3): 756-775, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29222443

RESUMEN

Small acidophilic archaea belonging to Micrarchaeota and Parvarchaeota phyla are known to physically interact with some Thermoplasmatales members in nature. However, due to a lack of cultivation and limited genomes on hand, their biodiversity, metabolisms, and physiologies remain largely unresolved. Here, we obtained 39 genomes from acid mine drainage (AMD) and hot spring environments around the world. 16S rRNA gene based analyses revealed that Parvarchaeota were only detected in AMD and hot spring habitats, while Micrarchaeota were also detected in others including soil, peat, hypersaline mat, and freshwater, suggesting a considerable higher diversity and broader than expected habitat distribution for this phylum. Despite their small genomes (0.64-1.08 Mb), these archaea may contribute to carbon and nitrogen cycling by degrading multiple saccharides and proteins, and produce ATP via aerobic respiration and fermentation. Additionally, we identified several syntenic genes with homology to those involved in iron oxidation in six Parvarchaeota genomes, suggesting their potential role in iron cycling. However, both phyla lack biosynthetic pathways for amino acids and nucleotides, suggesting that they likely scavenge these biomolecules from the environment and/or other community members. Moreover, low-oxygen enrichments in laboratory confirmed our speculation that both phyla are microaerobic/anaerobic, based on several specific genes identified in them. Furthermore, phylogenetic analyses provide insights into the close evolutionary history of energy related functionalities between both phyla with Thermoplasmatales. These results expand our understanding of these elusive archaea by revealing their involvement in carbon, nitrogen, and iron cycling, and suggest their potential interactions with Thermoplasmatales on genomic scale.


Asunto(s)
Archaea/metabolismo , Aminoácidos/metabolismo , Archaea/clasificación , Archaea/genética , Archaea/aislamiento & purificación , Biodiversidad , Evolución Biológica , Carbono/metabolismo , Agua Dulce/microbiología , Genoma Arqueal , Genómica , Manantiales de Aguas Termales/microbiología , Hierro/metabolismo , Nitrógeno/metabolismo , Ciclo del Nitrógeno , Filogenia , ARN Ribosómico 16S/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA