Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancers (Basel) ; 14(21)2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-36358792

RESUMEN

Cancer remains a serious social health problem, and immunotherapy has become the major treatments in tumor treatment. Additionally, improving the efficiency and safety of treatment is necessary. Further, more therapy targets are warranted for future tumor treatments. In this review, in addition to examining the currently recognized role of immune regulation, we focus on the proliferative role of 15 immune checkpoints in various tumors, including PD1, PD-L1, FGL1, CD155, CD47, SIRPα, CD276, IDO1, SIGLEC-15, TIM3, Galectin-9, CD70, CD27, 4-1BBL, and HVEM. We managed to conclude that various immune checkpoints such as PD1/PD-L1, FGL1, CD155, CD47/SIRPα, CD276, and SIGLEC-15 all regulate the cell cycle, and specifically through Cyclin D1 regulation. Furthermore, a variety of signal pathways engage in proliferation regulation, such as P13K, AKT, mTOR, and NK-κB, which are also the most common pathways involved in the regulation of immune checkpoint proliferation. Currently, only PD1/PD-L1, CD47/SIRPα, TIM3/Galectin-9, and CD70/CD27 checkpoints have been shown to interact with each other to regulate tumor proliferation in pairs. However, for other immune checkpoints, the role of their receptors or ligands in tumor proliferation regulation is still unknown, and we consider the enormous potential in this area. An increasing number of studies have validated the various role of immune checkpoints in tumors, and based on this literature review, we found that most of the immune checkpoints play a dual regulatory role in immunity and proliferation. Therefore, the related pathways in proliferation regulation can served the role of therapy targets in tumor therapy. Further, great potential is displayed by IDO1, SIGLEC-15, 4-1BBL, and HVEM in tumor proliferation regulation, which may become novel therapy targets in tumor treatment.

2.
Transl Lung Cancer Res ; 10(12): 4617-4630, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35070765

RESUMEN

BACKGROUND: Primary tracheobronchial neoplasm is rare yet poses a serious threat to life. Due to its low incidence, the immune microenvironment of such tumors remained unclear. This study aimed to clarify the expression of programmed death-ligand 1 (PD-L1) and infiltration of immune cells in primary tracheobronchial neoplasm, which might be useful for guiding treatment and evaluating clinical outcome. METHODS: We assessed retrospectively the expression of PD-L1 and infiltration in cells expressing CD8, CD16, CD68, CD163 and FOXP3 in 21 patients with primary tracheobronchial neoplasm who underwent surgery in Tangdu Hospital from January 2016 to July 2021. The expression of PD-L1 was assessed based on the tumor proportion score system. The density of immune cells was analyzed by automatic image analysis software. RESULTS: In this study, all of 16 participants with adenoid cystic carcinoma (ACC) had no expression of PD-L1, whereas 4/5 (80%) of those with squamous cell carcinomas (SCC) were positive for PD-L1 expression. Compared with ACC, the density of FOXP3+ cells in both the intratumoral region and peritumoral region was higher in SCC (P<0.01). The density of FOXP3+ cells was significantly higher than that of CD8+, CD16+, and CD163+ cells in SCC in the intratumoral region (P<0.01). In contrast, the density of FOXP3+ cells was significantly lower than that of CD8+, CD16+, and CD68+ cells in ACC in both the intratumoral region and peritumoral regions. The density of CD68+ cells was significantly higher than that of CD8+ cells (P<0.05) and CD163+ cells (P<0.01) in ACC in the intratumoral region. Furthermore, the tumors of patients with metastasis more commonly of immune-excluded status, in which the CD8+ cells accumulated in peritumoral region. CONCLUSIONS: This study demonstrated that the expression of PD-L1 in primary tracheobronchial neoplasm was mainly concentrated in patients with SCC. In the immune microenvironment of SCC, FOXP3+ cells were the dominant immune cells, while in the immune microenvironment of ACC, CD68+ cells were the main immune cells. Therefore, the immune microenvironment was significantly different in primary tracheobronchial neoplasm according to histology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...