Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Stem Cell Res Ther ; 15(1): 89, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38528578

RESUMEN

BACKGROUND: Human pluripotent stem cells (hPSCs) have an enormous therapeutic potential, but large quantities of cells will need to be supplied by reliable, economically viable production processes. The suspension culture (three-dimensional; 3D) of hPSCs in stirred tank bioreactors (STBRs) has enormous potential for fuelling these cell demands. In this study, the efficient long-term matrix-free suspension culture of hPSC aggregates is shown. METHODS AND RESULTS: STBR-controlled, chemical aggregate dissociation and optimized passage duration of 3 or 4 days promotes exponential hPSC proliferation, process efficiency and upscaling by a seed train approach. Intermediate high-density cryopreservation of suspension-derived hPSCs followed by direct STBR inoculation enabled complete omission of matrix-dependent 2D (two-dimensional) culture. Optimized 3D cultivation over 8 passages (32 days) cumulatively yielded ≈4.7 × 1015 cells, while maintaining hPSCs' pluripotency, differentiation potential and karyotype stability. Gene expression profiling reveals novel insights into the adaption of hPSCs to continuous 3D culture compared to conventional 2D controls. CONCLUSIONS: Together, an entirely matrix-free, highly efficient, flexible and automation-friendly hPSC expansion strategy is demonstrated, facilitating the development of good manufacturing practice-compliant closed-system manufacturing in large scale.


Asunto(s)
Técnicas de Cultivo de Célula , Células Madre Pluripotentes , Humanos , Técnicas de Cultivo de Célula/métodos , Células Madre Pluripotentes/metabolismo , Diferenciación Celular , Reactores Biológicos , Criopreservación
3.
Nat Biotechnol ; 39(6): 737-746, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33558697

RESUMEN

Organoid models of early tissue development have been produced for the intestine, brain, kidney and other organs, but similar approaches for the heart have been lacking. Here we generate complex, highly structured, three-dimensional heart-forming organoids (HFOs) by embedding human pluripotent stem cell aggregates in Matrigel followed by directed cardiac differentiation via biphasic WNT pathway modulation with small molecules. HFOs are composed of a myocardial layer lined by endocardial-like cells and surrounded by septum-transversum-like anlagen; they further contain spatially and molecularly distinct anterior versus posterior foregut endoderm tissues and a vascular network. The architecture of HFOs closely resembles aspects of early native heart anlagen before heart tube formation, which is known to require an interplay with foregut endoderm development. We apply HFOs to study genetic defects in vitro by demonstrating that NKX2.5-knockout HFOs show a phenotype reminiscent of cardiac malformations previously observed in transgenic mice.


Asunto(s)
Corazón/embriología , Intestinos/embriología , Organoides/embriología , Tipificación del Cuerpo , Desarrollo Embrionario , Técnicas de Silenciamiento del Gen , Proteínas Fluorescentes Verdes/genética , Factor Nuclear 4 del Hepatocito/genética , Proteína Homeótica Nkx-2.5/genética , Humanos , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXF/genética , Análisis de Secuencia de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA