Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Clin Rev Allergy Immunol ; 62(1): 37-63, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32876924

RESUMEN

This review searched for published evidence that could explain how different physicochemical properties impact on the allergenicity of food proteins and if their effects would follow specific patterns among distinct protein families. Owing to the amount and complexity of the collected information, this literature overview was divided in two articles, the current one dedicated to protein families of plant allergens and a second one focused on animal allergens. Our extensive analysis of the available literature revealed that physicochemical characteristics had consistent effects on protein allergenicity for allergens belonging to the same protein family. For example, protein aggregation contributes to increased allergenicity of 2S albumins, while for legumins and cereal prolamins, the same phenomenon leads to a reduction. Molecular stability, related to structural resistance to heat and proteolysis, was identified as the most common feature promoting plant protein allergenicity, although it fails to explain the potency of some unstable allergens (e.g. pollen-related food allergens). Furthermore, data on physicochemical characteristics translating into clinical effects are limited, mainly because most studies are focused on in vitro IgE binding. Clinical data assessing how these parameters affect the development and clinical manifestation of allergies is minimal, with only few reports evaluating the sensitising capacity of modified proteins (addressing different physicochemical properties) in murine allergy models. In vivo testing of modified pure proteins by SPT or DBPCFC is scarce. At this stage, a systematic approach to link the physicochemical properties with clinical plant allergenicity in real-life scenarios is still missing.


Asunto(s)
Alérgenos , Hipersensibilidad a los Alimentos , Alérgenos/química , Animales , Hipersensibilidad a los Alimentos/etiología , Humanos , Ratones , Proteínas de Plantas , Polen
2.
Probiotics Antimicrob Proteins ; 14(5): 779-791, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-34081268

RESUMEN

Wheat is a worldwide staple food, yet some people suffer from strong immunological reactions after ingesting wheat-based products. Lactic acid bacteria (LAB) constitute a promising approach to reduce wheat allergenicity because of their proteolytic system. In this study, 172 LAB strains were screened for their proteolytic activity on gluten proteins and α-amylase inhibitors (ATIs) by SDS-PAGE and RP-HPLC. Gliadins, glutenins, and ATI antigenicity and allergenicity were assessed by Western blot/Dot blot and by degranulation assay using RBL-SX38 cells. The screening resulted in selecting 9 high gluten proteolytic strains belonging to two species: Enterococcus faecalis and Lactococcus lactis. Proteomic analysis showed that one of selected strains, Lc. lactis LLGKC18, caused degradation of the main gluten allergenic proteins. A significant decrease of the gliadins, glutenins, and ATI antigenicity was observed after fermentation of gluten by Lc. lactis LLGKC18, regardless the antibody used in the tests. Also, the allergenicity as measured by the RBL-SX38 cell degranulation test was significantly reduced. These results indicate that Lc. lactis LLGKC18 gluten fermentation can be deeply explored for its capability to hydrolyze the epitopes responsible for wheat allergy.


Asunto(s)
Lactobacillales , Lactococcus lactis , Alérgenos/metabolismo , Fermentación , Gliadina/metabolismo , Glútenes/metabolismo , Humanos , Inmunoglobulina E/metabolismo , Lactobacillales/metabolismo , Lactococcus lactis/metabolismo , Proteómica
3.
Clin Rev Allergy Immunol ; 62(1): 1-36, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33411319

RESUMEN

Key determinants for the development of an allergic response to an otherwise 'harmless' food protein involve different factors like the predisposition of the individual, the timing, the dose, the route of exposure, the intrinsic properties of the allergen, the food matrix (e.g. lipids) and the allergen modification by food processing. Various physicochemical parameters can have an impact on the allergenicity of animal proteins. Following our previous review on how physicochemical parameters shape plant protein allergenicity, the same analysis was proceeded here for animal allergens. We found that each parameter can have variable effects, ranging on an axis from allergenicity enhancement to resolution, depending on its nature and the allergen. While glycosylation and phosphorylation are common, both are not universal traits of animal allergens. High molecular structures can favour allergenicity, but structural loss and uncovering hidden epitopes can also have a similar impact. We discovered that there are important knowledge gaps in regard to physicochemical parameters shaping protein allergenicity both from animal and plant origin, mainly because the comparability of the data is poor. Future biomolecular studies of exhaustive, standardised design together with strong validation part in the clinical context, together with data integration model systems will be needed to unravel causal relationships between physicochemical properties and the basis of protein allergenicity.


Asunto(s)
Alérgenos , Hipersensibilidad a los Alimentos , Alérgenos/química , Animales , Epítopos , Manipulación de Alimentos , Humanos , Proteínas
4.
Int J Mol Sci ; 21(16)2020 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-32823634

RESUMEN

Although wheat is used worldwide as a staple food, it can give rise to adverse reactions, for which the triggering factors have not been identified yet. These reactions can be caused mainly by kernel proteins, both gluten and non-gluten proteins. Among these latter proteins, α-amylase/trypsin inhibitors (ATI) are involved in baker's asthma and realistically in Non Celiac Wheat Sensitivity (NCWS). In this paper, we report characterization of three transgenic lines obtained from the bread wheat cultivar Bobwhite silenced by RNAi in the three ATI genes CM3, CM16 and 0.28. We have obtained transgenic lines showing an effective decrease in the activity of target genes that, although showing a higher trypsin inhibition as a pleiotropic effect, generate a lower reaction when tested with sera of patients allergic to wheat, accounting for the important role of the three target proteins in wheat allergies. Finally, these lines show unintended differences in high molecular weight glutenin subunits (HMW-GS) accumulation, involved in technological performances, but do not show differences in terms of yield. The development of new genotypes accumulating a lower amount of proteins potentially or effectively involved in allergies to wheat and NCWS, not only offers the possibility to use them as a basis for the production of varieties with a lower impact on adverse reaction, but also to test if these proteins are actually implicated in those pathologies for which the triggering factor has not been established yet.


Asunto(s)
Alérgenos/efectos adversos , Pan , Genes de Plantas , Interferencia de ARN , Triticum/genética , Regulación de la Expresión Génica de las Plantas , Humanos , Hipersensibilidad/sangre , Inmunoglobulina E/metabolismo , Proteínas de Plantas/efectos adversos , Plantas Modificadas Genéticamente , Unión Proteica , Solubilidad , Transformación Genética , Triticum/crecimiento & desarrollo , alfa-Amilasas/metabolismo
5.
Foods ; 9(6)2020 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-32560210

RESUMEN

Food allergy is an IgE-mediated abnormal response to otherwise harmless food proteins, affecting between 5% and 10% of the world preschool children population and 1% to 5% adults. Several physical, chemical, and biotechnological approaches have been used to reduce the allergenicity of food allergens. Fermentation processes that contribute to technological and desirable changes in taste, flavor, digestibility, and texture of food products constitute one of these approaches. Lactic acid bacteria (LAB), used as starter cultures in dairy products, are a subject of increasing interest in fermentation of plant proteins. However, the studies designed to assess the impact of LAB on reduction of allergenicity of seed proteins are at an early stage. This review presents the current knowledge on food fermentation, with a focus on seed proteins that are increasingly used as ingredients, and its impacts on food potential allergenicity.

6.
Food Res Int ; 118: 108-114, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30898346

RESUMEN

Ovalbumin (OVA), a major allergen from hen's egg albumen, tends to aggregate when heated. Depending on the balance of attractive and repulsive interactions, heat-induced OVA aggregates have various morphologies, which differ in digestibility. In the context of food allergy to egg, we investigated the ability of native and thermally aggregated OVA as well as their digests to induce the degranulation of a humanized rat basophil leukemia (RBL) cell line, which was sensitized with a pool of sera from egg-allergic children. Native and two thermally aggregated OVA forms were digested in vitro using a gastrointestinal digestion model based on the INFOGEST harmonized protocol including a final degradation with jejunal brush border membranes (BBM) enzymes. The course of digestion was monitored by the OPA method and by RP-HPLC. Digestibility was OVA small aggregates>OVA large aggregates>>native OVA and BBM peptidases only significantly hydrolyzed small-sized peptides from gastro-duodenal digests of the aggregates. The degranulation ability of the native OVA slightly changed during the gastric phase but mostly decreased during the duodenal digestion with no further change with BBM digestion. The degranulation ability of aggregates, which was significantly lower than the ability of native OVA, was not significantly affected by digestion. Digestibility and ability to induce basophil degranulation can thus not be straightforward linked.


Asunto(s)
Basófilos/metabolismo , Digestión , Hipersensibilidad al Huevo/inmunología , Calor , Ovalbúmina/inmunología , Ovalbúmina/metabolismo , Alérgenos/inmunología , Animales , Presentación de Antígeno , Basófilos/inmunología , Degranulación de la Célula , Línea Celular , Pollos , Niño , Hipersensibilidad al Huevo/sangre , Huevos , Tracto Gastrointestinal , Humanos , Inmunoglobulina E/sangre , Ovalbúmina/sangre , Péptidos/química , Péptidos/inmunología , Ratas
7.
J Food Sci Technol ; 56(1): 177-186, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30728559

RESUMEN

The main aim of this study was to develop a continuous microwave treatment system of whey proteins and then apply this process at 37 °C, 50 °C, 65 °C and 70 °C to achieve pepsinolysis and produce extensively hydrolysed bovine whey protein hydrolysates with low allergenic properties. The microwave process was compared to a conventional thermal treatment with similar temperature set points. Both processes were deeply analysed in terms of the thermal kinetics and operating conditions. The pepsin hydrolysates obtained by the continuous microwave treatment and conventional heating were characterized by SDS-PAGE and RP-HPLC. The allergenicity of the whey protein hydrolysates was explored using a human IgE sensitized rat basophil leukaemia cell assay. The results indicate that extensively hydrolysed whey protein hydrolysates were obtained by microwave only at 65 °C and in a shorter time compared with the conventional thermal treatment. In the same temperature conditions under conventional heating, ß-lactoglobulin was resistant to pepsinolysis, and 37% of it remained intact. As demonstrated by an in vitro degranulation assay using specific human IgE-sensitized rat basophils, the extensively hydrolysed whey protein obtained by microwave showed maximum degranulation values of 6.53% compared to those of the native whey protein isolate (45.97%) and hence elicited no more allergenic reactions in basophils. This work emphasizes the potential industrial use of microwave heating specific to milk protein processing to reduce their allergenicity and improve their end-use properties.

8.
Plants (Basel) ; 7(4)2018 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-30453594

RESUMEN

Although wheat is a staple food for most of the human population, some of its components trigger adverse reactions. Among wheat components, the alpha-amylase/trypsin inhibitors (ATI) are important triggers of several allergies and activators of innate immunity. ATI are a group of exogenous protease inhibitors and include several polypeptides. The three ATI polypeptides named CM3, CM16 and 0.28 are considered major allergens, and might also play a role in other common wheat-related pathologies, such as Non Celiac Wheat Sensitivity and even Celiac Disease. On this basis, we pointed to obtain high amounts of them in purity and to evaluate their allergenicity potential. We thus isolated the mRNA corresponding to the three ATI genes CM3, CM16 and 0.28 from 28 days post-anthesis wheat kernels and the corresponding cDNAs were used for heterologous expression in Pichia pastoris. The three purified proteins were tested in degranulation assay against human sera of patients with food allergy to wheat. A large range of degranulation values was observed for each protein according to the sera tested. All of the three purified proteins CM3, CM16 and 0.28 were active as allergens because they were able to induce basophils degranulation on wheat allergic patients' sera, with the highest values of ß-hexosaminidase release observed for CM3 protein.

9.
BMC Plant Biol ; 17(1): 248, 2017 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-29258439

RESUMEN

BACKGROUND: Among wheat gluten proteins, the α-type gliadins are the major responsible for celiac disease, an autoimmune disorder that affects about 1% of the world population. In fact, these proteins contain several toxic and immunogenic epitopes that trigger the onset of the disease. The α-type gliadins are a multigene family, encoded by genes located at the complex Gli-2 loci. RESULTS: Here, three bread wheat deletion lines (Gli-A2, Gli-D2 and Gli-A2/Gli-D2) at the Gli-2 loci were generated by the introgression in the bread wheat cultivar Pegaso of natural mutations, detected in different bread wheat cultivars. The molecular characterization of these lines allowed the isolation of 49 unique expressed genes coding α-type gliadins, that were assigned to each of the three Gli-2 loci. The number and the amount of α-type gliadin transcripts were drastically reduced in the deletion lines. In particular, the line Gli-A2/Gli-D2 contained only 12 active α-type gliadin genes (-75.6% respect to the cv. Pegaso) and a minor level of transcripts (-80% compared to cv. Pegaso). Compensatory pleiotropic effects were observed in the two other classes of gliadins (ω- and γ-gliadins) either at gene expression or protein levels. Although the comparative analysis of the deduced amino acid sequences highlighted the typical structural features of α-type gliadin proteins, substantial differences were displayed among the 49 proteins for the presence of toxic and immunogenic epitopes. CONCLUSION: The deletion line Gli-A2/Gli-D2 did not contain the 33-mer peptide, one of the major epitopes triggering the celiac disease, representing an interesting material to develop less "toxic" wheat varieties.


Asunto(s)
Epítopos/inmunología , Gliadina/genética , Gliadina/inmunología , Triticum/genética , Enfermedad Celíaca/inducido químicamente , Gliadina/química , Humanos , Filogenia , Análisis de Secuencia de Proteína , Triticum/crecimiento & desarrollo , Triticum/metabolismo
10.
J Agric Food Chem ; 65(18): 3693-3701, 2017 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-28434227

RESUMEN

Heated foods are recommended for avoiding sensitization to food proteins, but depending on the physicochemical conditions during heating, more or less unfolded proteins aggregate differently. Whether the aggregation process could modulate allergenicity was investigated. Heating ovalbumin in opposite electrostatic conditions led to small (A-s, about 50 nm) and large (A-L, about 65 µm) aggregates that were used to sensitize mice. The symptoms upon oral challenge and rat basophil leukemia degranulation with native ovalbumin differed on the basis of which aggregates were used during the sensitization. Immunoglobulin-E (IgE) production was significantly lower with A-s than with A-L. Although two common linear IgE-epitopes were found, the aggregates bound and cross-linked IgE similarly or differently, depending on the sensitizing aggregate. The ovalbumin aggregates thus displayed a lower allergenic potential when formed under repulsive rather than nonrepulsive electrostatic conditions. This further demonstrates that food structure modulates the immune response during the sensitization phase with some effects on the elicitation phase of an allergic reaction and argues for the need to characterize the aggregation state of allergens.


Asunto(s)
Alérgenos/química , Alérgenos/inmunología , Hipersensibilidad al Huevo/inmunología , Ovalbúmina/química , Ovalbúmina/inmunología , Animales , Basófilos/inmunología , Femenino , Calor , Humanos , Inmunoglobulina G/inmunología , Ratones , Ratones Endogámicos BALB C , Agregado de Proteínas , Ratas , Electricidad Estática
11.
J Agric Food Chem ; 65(31): 6442-6451, 2017 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-28190352

RESUMEN

Wheat allergy is an IgE-mediated disorder. Polyphenols, which are known to interact with certain proteins, could be used to reduce allergic reactions. This study screened several polyphenol sources for their ability to interact with gliadins, mask epitopes, and affect basophil degranulation. Polyphenol extracts from artichoke leaves, cranberries, apples, and green tea leaves were examined. Of these extracts, the first three formed insoluble complexes with gliadins. Only the cranberry and apple extracts masked epitopes in dot blot assays using anti-gliadin IgG and IgE antibodies from patients with wheat allergies. The cranberry and artichoke extracts limited cellular degranulation by reducing mouse anti-gliadin IgE recognition. In conclusion, the cranberry extract is the most effective polyphenol source at reducing the immunogenicity and allergenicity of wheat gliadins.


Asunto(s)
Alérgenos/inmunología , Gliadina/inmunología , Extractos Vegetales/química , Polifenoles/química , Hipersensibilidad al Trigo/inmunología , Alérgenos/química , Animales , Basófilos/inmunología , Gliadina/química , Humanos , Inmunoglobulina E/inmunología , Espectrometría de Masas , Unión Proteica , Ratas
12.
J Agric Food Chem ; 63(42): 9323-32, 2015 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-26447559

RESUMEN

The ω5-gliadins are the major sensitizing allergens in wheat-dependent exercise-induced anaphylaxis (WDEIA). In this study, two-dimensional immunoblot analysis was used to assess the allergenic potential of two transgenic wheat lines in which ω5-gliadin genes were silenced by RNA interference. Sera from 7 of 11 WDEIA patients showed greatly reduced levels of immunoglobulin E (IgE) reactivity to ω5-gliadins in both transgenic lines. However, these sera also showed low levels of reactivity to other gluten proteins. Sera from three patients showed the greatest reactivity to proteins other than ω5-gliadins, either high-molecular-weight glutenin subunits (HMW-GSs), α-gliadins, or non-gluten proteins. The complexity of immunological responses among these patients suggests that flour from the transgenic lines would not be suitable for individuals already diagnosed with WDEIA. However, the introduction of wheat lacking ω5-gliadins could reduce the number of people sensitized to these proteins and thereby decrease the overall incidence of this serious food allergy.


Asunto(s)
Anafilaxia/inmunología , Antígenos de Plantas/inmunología , Gliadina/inmunología , Plantas Modificadas Genéticamente/inmunología , Triticum/inmunología , Hipersensibilidad al Trigo/inmunología , Adulto , Anafilaxia/sangre , Antígenos de Plantas/análisis , Antígenos de Plantas/genética , Ejercicio Físico , Femenino , Harina/análisis , Alimentos Modificados Genéticamente , Gliadina/análisis , Gliadina/genética , Glútenes/inmunología , Humanos , Inmunoglobulina E/sangre , Masculino , Plantas Modificadas Genéticamente/química , Plantas Modificadas Genéticamente/genética , Triticum/química , Triticum/genética , Hipersensibilidad al Trigo/sangre
13.
J Agric Food Chem ; 63(29): 6546-54, 2015 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-26186140

RESUMEN

Wheat products cause IgE-mediated allergies. The present study aimed to decipher the molecular basis of α- and γ-gliadin allergenicity. Gliadins and their domains, the repetitive N-terminal and the nonrepetitive C-terminal domains, were cloned and expressed in Escherichia coli. Their secondary structures and their IgE binding capacity were compared with those of natural proteins before and after reduction/alkylation. Allergenicity was evaluated with sera from patients who had a wheat food allergy or baker's asthma. The secondary structures of natural and recombinant proteins were slightly different. Compared with natural gliadins, recombinant proteins retained IgE binding but with reduced reactivity. Reduction/alkylation decreased IgE binding for both natural and recombinant gliadins. Although more continuous epitopes were identified in the N-terminal domains of α- and γ-gliadins, both the N-terminal and C-terminal domains contributed to IgE binding. As for other members of the prolamin superfamily, disulfide bonds appear to be of high importance for IgE binding.


Asunto(s)
Alérgenos/química , Disulfuros/química , Gliadina/química , Gliadina/metabolismo , Inmunoglobulina E/metabolismo , Alérgenos/inmunología , Alérgenos/metabolismo , Proteínas de la Membrana Bacteriana Externa , Dicroismo Circular , Epítopos/química , Epítopos/metabolismo , Proteínas de Escherichia coli , Gliadina/inmunología , Humanos , Hidrolasas , Unión Proteica , Estructura Secundaria de Proteína , Secuencias Repetitivas de Ácidos Nucleicos , Relación Estructura-Actividad , Triticum/química , Hipersensibilidad al Trigo/sangre , Hipersensibilidad al Trigo/inmunología
14.
J Agric Food Chem ; 63(22): 5403-9, 2015 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-25980542

RESUMEN

Diversification of gluten applications in the food and cosmetics industries was achieved through the production of water-soluble gluten that can be obtained by deamidation. Current analytical methods dedicated to gluten detection failed to detect deamidated gluten. After immunizing mice with the peptide LQPEEPFPE conjugated to keyhole limpet hemocyanin, five mouse monoclonal antibodies (mAbs) were produced and sequences of bound epitopes were determined as XPXEPFPE, where X is Q or E. The mAbs exhibited high specificity for deamidated gliadins and low molecular weight glutenin subunits. A competitive enzyme-linked immunosorbent assay (ELISA) based on INRA-DG1 mAb was developed with an IC50% of 85 ng/mL and a limit of detection of 25 ng/mL. The intra- and interassay coefficients of variation (CV) were <10% except for the interassay CV of the low-level control (40 ng/mL), which was 20%. This assay was capable of detecting three of the four deamidated gluten samples spiked in rice flour at 20 mg/kg.


Asunto(s)
Ensayo de Inmunoadsorción Enzimática/métodos , Harina/análisis , Contaminación de Alimentos/análisis , Glútenes/análisis , Oryza/química , Animales , Anticuerpos Monoclonales/análisis , Desaminación , Ratones , Ratones Endogámicos BALB C , Sensibilidad y Especificidad
15.
Proteomics ; 15(10): 1736-45, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25764008

RESUMEN

Food allergy has become a major health issue in developed countries, therefore there is an urgent need to develop analytical methods able to detect and quantify with a good sensitivity and reliability some specific allergens in complex food matrices. In this paper, we present a targeted MS/MS approach to compare the relative abundance of the major recognized wheat allergens in the salt-soluble (albumin/globulin) fraction of wheat grains. Twelve allergens were quantified in seven wheat varieties, selected from three Triticum species: T. aestivum (bread wheat), T. durum (durum wheat), and T. monococcum. The allergens were monitored from one or two proteotypic peptides and their relative abundance was deduced from the intensity of one fragment measured in MS/MS. Whereas the abundance of some of the targeted allergens was quite stable across the genotypes, others like alpha-amylase inhibitors showed clear differences according to the wheat species, in accordance with the results of earlier functional studies. This study enriches the scarce knowledge available on allergens content in wheat genotypes, and brings new perspectives for food safety and plant breeding.


Asunto(s)
Alérgenos/inmunología , Espectrometría de Masas en Tándem/métodos , Triticum/inmunología , Alérgenos/química , Secuencia de Aminoácidos , Datos de Secuencia Molecular , Péptidos/química , Péptidos/inmunología , Análisis de Componente Principal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...