Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 18(17): 11153-11164, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38641345

RESUMEN

Graphene is atomically thin, possesses excellent thermal conductivity, and is able to withstand high current densities, making it attractive for many nanoscale applications such as field-effect transistors, interconnects, and thermal management layers. Enabling integration of graphene into such devices requires nanostructuring, which can have a drastic impact on the self-heating properties, in particular at high current densities. Here, we use a combination of scanning thermal microscopy, finite element thermal analysis, and operando scanning transmission electron microscopy techniques to observe prototype graphene devices in operation and gain a deeper understanding of the role of geometry and interfaces during high current density operation. We find that Peltier effects significantly influence the operational limit due to local electrical and thermal interfacial effects, causing asymmetric temperature distribution in the device. Thus, our results indicate that a proper understanding and design of graphene devices must include consideration of the surrounding materials, interfaces, and geometry. Leveraging these aspects provides opportunities for engineered extreme operation devices.

2.
Adv Mater ; 36(24): e2311559, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38520395

RESUMEN

It is shown that structural disorder-in the form of anisotropic, picoscale atomic displacements-modulates the refractive index tensor and results in the giant optical anisotropy observed in BaTiS3, a quasi-1D hexagonal chalcogenide. Single-crystal X-ray diffraction studies reveal the presence of antipolar displacements of Ti atoms within adjacent TiS6 chains along the c-axis, and threefold degenerate Ti displacements in the a-b plane. 47/49Ti solid-state NMR provides additional evidence for those Ti displacements in the form of a three-horned NMR lineshape resulting from a low symmetry local environment around Ti atoms. Scanning transmission electron microscopy is used to directly observe the globally disordered Ti a-b plane displacements and find them to be ordered locally over a few unit cells. First-principles calculations show that the Ti a-b plane displacements selectively reduce the refractive index along the ab-plane, while having minimal impact on the refractive index along the chain direction, thus resulting in a giant enhancement in the optical anisotropy. By showing a strong connection between structural disorder with picoscale displacements and the optical response in BaTiS3, this study opens a pathway for designing optical materials with high refractive index and functionalities such as large optical anisotropy and nonlinearity.

4.
Nat Commun ; 14(1): 7550, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37985658

RESUMEN

Recent studies of secondary electron (SE) emission in scanning transmission electron microscopes suggest that material's properties such as electrical conductivity, connectivity, and work function can be probed with atomic scale resolution using a technique known as secondary electron e-beam-induced current (SEEBIC). Here, we apply the SEEBIC imaging technique to a stacked 2D heterostructure device to reveal the spatially resolved electron density of an encapsulated WSe2 layer. We find that the double Se lattice site shows higher emission than the W site, which is at odds with first-principles modelling of valence ionization of an isolated WSe2 cluster. These results illustrate that atomic level SEEBIC contrast within a single material is possible and that an enhanced understanding of atomic scale SE emission is required to account for the observed contrast. In turn, this suggests that, in the future, subtle information about interlayer bonding and the effect on electron orbitals could be directly revealed with this technique.

5.
J Am Chem Soc ; 145(48): 25942-25947, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37890151

RESUMEN

We report the seminal experimental isolation and DFT characterization of pristine [5,5] C130-D5h(1) fullertubes. This achievement represents the largest soluble carbon molecule obtained in its pristine form. The [5,5] C130 species is the highest aspect ratio fullertube purified to date and now surpasses the recent gigantic [5,5] C120-D5d(1). In contrast to C90, C100, and C120 fullertubes, the longer C130-D5h has more nanotubular carbons (70) than end-cap fullerenyl atoms (60). Starting from 39,393 possible C130 isolated pentagon rule (IPR) structures and after analyzing polarizability, retention time, and UV-vis spectra, these three layers of data remarkably predict a single candidate isomer and fullertube, [5,5] C130-D5h(1). This structural assignment is augmented by atomic resolution STEM data showing distinctive and tubular "pill-like" structures with diameters and aspect ratios consistent with [5,5] C130-D5h(1) fullertubes. The high selectivity of the aminopropanol reaction with spheroidal fullerenes permits facile separation and removal of fullertubes from soot extracts. Experimental analyses (HPLC retention time, UV-vis, and STEM) were synergistically used (with polarizability and DFT property calculations) to down select and confirm the C130 fullertube structure. Achieving the isolation of a new [5,5] C130-D5h fullertube opens the door to application development and fundamental studies of electron confinement, fluorescence, and metallic character for a fullertube series of molecules with systematic tubular elongation. This [5,5] fullertube family also invites comparative studies with single-walled carbon nanotubes (SWCNTs), nanohorns (SWCNHs), and fullerenes.

6.
Microsc Microanal ; 29(5): 1671-1681, 2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37670369

RESUMEN

The performance of electron energy loss spectrometers can often be limited by their electron optical aberrations. Due to recent developments in high energy resolution and momentum-resolved electron energy loss spectroscopy (EELS), there is renewed interest in optimizing the performance of such spectrometers. For example, the "ω - q" mode of momentum-resolved EELS, which uses a small convergence angle and requires aligning diffraction spots with the slot aperture, presents a challenge in the realignments of the spectrometer required by the adjustment of the projection lenses. Automated and robust alignment can greatly benefit such a process. The first step toward this goal is automatic and quantitative measurement of spectrometer aberrations. We demonstrate the measurement of geometric aberrations and distortions in EELS within a monochromated scanning transmission electron microscope (STEM). To better understand the results, we present a wave mechanical simulation of the experiment. Using the measured aberration and distortion coefficients as inputs to the simulation, we find a good match between the simulation and experiment, verifying formulae used in the simulation. From verified simulations with known aberration coefficients, we can assess the accuracy of measurements. Understanding the errors and inaccuracies in the procedure can guide further progress in aberration measurement and correction for new spectrometer developments.

9.
Microsc Microanal ; 29(Supplement_1): 1368-1369, 2023 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-37613717
13.
Adv Mater ; 35(45): e2301560, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37574252

RESUMEN

The scanning transmission electron microscope, a workhorse instrument in materials characterization, is being transformed into an atomic-scale material-manipulation platform. With an eye on the trajectory of recent developments and the obstacles toward progress in this field, a vision for a path toward an expanded set of capabilities and applications is provided. The microscope is reconceptualized as an instrument for fabrication and synthesis with the capability to image and characterize atomic-scale structural formation as it occurs. Further development and refinement of this approach may have substantial impact on research in microelectronics, quantum information science, and catalysis, where precise control over atomic-scale structure and chemistry of a few "active sites" can have a dramatic impact on larger-scale functionality and where developing a better understanding of atomic-scale processes can help point the way to larger-scale synthesis approaches.

14.
Small Methods ; 7(10): e2300401, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37415539

RESUMEN

The engineering of quantum materials requires the development of tools able to address various synthesis and characterization challenges. These include the establishment and refinement of growth methods, material manipulation, and defect engineering. Atomic-scale modification will be a key enabling factor for engineering quantum materials where desired phenomena are critically determined by atomic structures. Successful use of scanning transmission electron microscopes (STEMs) for atomic scale material manipulation has opened the door for a transformed view of what can be accomplished using electron-beam-based strategies. However, serious obstacles exist on the pathway from possibility to practical reality. One such obstacle is the in situ delivery of atomized material in the STEM to the region of interest for further fabrication processes. Here, progress on this front is presented with a view toward performing synthesis (deposition and growth) processes in a scanning transmission electron microscope in combination with top-down control over the reaction region. An in situ thermal deposition platform is presented, tested, and deposition and growth processes are demonstrated. In particular, it is shown that isolated Sn atoms can be evaporated from a filament and caught on the nearby sample, demonstrating atomized material delivery. This platform is envisioned to facilitate real-time atomic resolution imaging of growth processes and open new pathways toward atomic fabrication.

15.
Adv Mater ; 35(32): e2302906, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37309684

RESUMEN

Atomic-scale engineering typically involves bottom-up approaches, leveraging parameters such as temperature, partial pressures, and chemical affinity to promote spontaneous arrangement of atoms. These parameters are applied globally, resulting in atomic-scale features scattered probabilistically throughout the material. In a top-down approach, different regions of the material are exposed to different parameters, resulting in structural changes varying on the scale of the resolution. In this work, the application of global and local parameters is combined in an aberration-corrected scanning transmission electron microscope (STEM) to demonstrate atomic-scale precision patterning of atoms in twisted bilayer graphene. The focused electron beam is used to define attachment points for foreign atoms through the controlled ejection of carbon atoms from the graphene lattice. The sample environment is staged with nearby source materials such that the sample temperature can induce migration of the source atoms across the sample surface. Under these conditions, the electron-beam (top-down) enables carbon atoms in the graphene to be replaced spontaneously by diffusing adatoms (bottom-up). Using image-based feedback control, arbitrary patterns of atoms and atom clusters are attached to the twisted bilayer graphene with limited human interaction. The role of substrate temperature on adatom and vacancy diffusion is explored by first-principles simulations.

16.
Small ; 19(37): e2208162, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37203310

RESUMEN

With the recent development of high-acquisition-speed pixelated detectors, 4D scanning transmission electron microscopy (4D-STEM) is becoming routinely available in high-resolution electron microscopy. 4D-STEM acts as a "universal" method that provides local information on materials that is challenging to extract from bulk techniques. It extends conventional STEM imaging to include super-resolution techniques and to provide quantitative phase-based information, such as differential phase contrast, ptychography, or Bloch wave phase retrieval. However, an important missing factor is the chemical and bonding information provided by electron energy loss spectroscopy (EELS). 4D-STEM and EELS cannot currently be acquired simultaneously due to the overlapping geometry of the detectors. Here, the feasibility of modifying the detector geometry to overcome this challenge for bulk specimens is demonstrated, and the use of a partial or defective detector for ptycholgaphic structural imaging is explored. Results show that structural information beyond the diffraction-limit and chemical information from the material can be extracted together, resulting in simultaneous multi-modal measurements, adding the additional dimensions of spectral information to 4D datasets.

17.
Nano Lett ; 23(6): 2339-2346, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36877825

RESUMEN

Direct-write processes enable the alteration or deposition of materials in a continuous, directable, sequential fashion. In this work, we demonstrate an electron beam direct-write process in an aberration-corrected scanning transmission electron microscope. This process has several fundamental differences from conventional electron-beam-induced deposition techniques, where the electron beam dissociates precursor gases into chemically reactive products that bond to a substrate. Here, we use elemental tin (Sn) as a precursor and employ a different mechanism to facilitate deposition. The atomic-sized electron beam is used to generate chemically reactive point defects at desired locations in a graphene substrate. Temperature control of the sample is used to enable the precursor atoms to migrate across the surface and bond to the defect sites, thereby enabling atom-by-atom direct writing.

19.
Adv Mater ; 35(14): e2210116, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36635517

RESUMEN

The ability to deterministically fabricate nanoscale architectures with atomic precision is the central goal of nanotechnology, whereby highly localized changes in the atomic structure can be exploited to control device properties at their fundamental physical limit. Here, an automated, feedback-controlled atomic fabrication method is reported and the formation of 1D-2D heterostructures in MoS2 is demonstrated through selective transformations along specific crystallographic orientations. The atomic-scale probe of an aberration-corrected scanning transmission electron microscope (STEM) is used, and the shape and symmetry of the scan pathway relative to the sample orientation are controlled. The focused and shaped electron beam is used to reliably create Mo6 S6 nanowire (MoS-NW) terminated metallic-semiconductor 1D-2D edge structures within a pristine MoS2 monolayer with atomic precision. From these results, it is found that a triangular beam path aligned along the zig-zag sulfur terminated (ZZS) direction forms stable MoS-NW edge structures with the highest degree of fidelity without resulting in disordering of the surrounding MoS2 monolayer. Density functional theory (DFT) calculations and ab initio molecular dynamic simulations (AIMD) are used to calculate the energetic barriers for the most stable atomic edge structures and atomic transformation pathways. These discoveries provide an automated method to improve understanding of atomic-scale transformations while opening a pathway toward more precise atomic-scale engineering of materials.

20.
Nat Commun ; 13(1): 6348, 2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36289236

RESUMEN

The electronic instabilities in CsV3Sb5 are believed to originate from the V 3d-electrons on the kagome plane, however the role of Sb 5p-electrons for 3-dimensional orders is largely unexplored. Here, using resonant tender X-ray scattering and high-pressure X-ray scattering, we report a rare realization of conjoined charge density waves (CDWs) in CsV3Sb5, where a 2 × 2 × 1 CDW in the kagome sublattice and a Sb 5p-electron assisted 2 × 2 × 2 CDW coexist. At ambient pressure, we discover a resonant enhancement on Sb L1-edge (2s→5p) at the 2 × 2 × 2 CDW wavevectors. The resonance, however, is absent at the 2 × 2 × 1 CDW wavevectors. Applying hydrostatic pressure, CDW transition temperatures are separated, where the 2 × 2 × 2 CDW emerges 4 K above the 2 × 2 × 1 CDW at 1 GPa. These observations demonstrate that symmetry-breaking phases in CsV3Sb5 go beyond the minimal framework of kagome electronic bands near van Hove filling.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...