Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 12(17)2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37687345

RESUMEN

Elevated carbon dioxide and drought are significant stressors in light of climate change. This study explores the interplay between elevated atmospheric CO2, drought stress, and plant physiological responses. Two Brassica oleracea varieties (cauliflowers and cabbage) were utilized as model plants. Our findings indicate that elevated CO2 accelerates assimilation rate decline during drought. The integrity of photosynthetic components influenced electron transport, potentially due to drought-induced nitrate reductase activation changes. While CO2 positively influenced photosynthesis and water-use efficiency during drought, recovery saw decreased stomatal conductance in high-CO2-grown plants. Drought-induced monoterpene emissions varied, influenced by CO2 concentration and species-specific responses. Drought generally increased polyphenols, with an opposing effect under elevated CO2. Flavonoid concentrations fluctuated with drought and CO2 levels, while chlorophyll responses were complex, with high CO2 amplifying drought's effects on chlorophyll content. These findings contribute to a nuanced understanding of CO2-drought interactions and their intricate effects on plant physiology.

2.
Plants (Basel) ; 11(14)2022 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-35890439

RESUMEN

Climate change is one of the main challenges for actual and future generations. Global warming affects plants and animals and is responsible for considerable crop loss. This study studied the influence of antagonist successive stresses, cold-heat and heat-cold, on two medicinal plants Ocimum basilicum L. and Salvia officinalis L. The photosynthetic parameters decreased for plants under the variation of subsequent stress. Net assimilation rates and stomatal conductance to water vapor are more affected in the case of plants under cold-heat consecutive stress than heat-cold successive stress. Emissions of volatile organic compounds have been enhanced for plants under successive stress when compared with control plants. Chlorophyll concentrations for plants under successive stress decreased for basil and sage plants. The total phenolic and flavonoid contents were not affected by the successive stresses when compared with the plants under only one type of treatment.

3.
Antioxidants (Basel) ; 11(5)2022 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-35624672

RESUMEN

The purpose of this study is to reveal the chemical and biochemical characteristics and the potential aromatherapy applications of the essential oil (EO) of Salvia officinalis (common sage) within a hospital environment. The chemical composition was determined by gas chromatography with mass spectrometry and ATR-FTIR spectroscopy. Three types of sage EOs were included in this study: two commercial oils and one oil obtained by in-house hydrodistillation. Based on the findings, these EOs were included in different chemotypes. The first two samples were similar to the most common chemotype (α-thujone > camphor > 1,8-cineole > ß-thujone), while the in-house sage EO revealed a high content of 1,8-cineole, borneol, α-thujone, similar to the Dalmatian type. The latter sample was selected to be evaluated for its antioxidant and medical effects, as borneol, a bicyclic monoterpene, is known as a substance with anesthetic and analgesic effects in traditional Asian medicine. The study suggests that the antioxidant capacity of the sage EO is modest (33.61% and 84.50% inhibition was determined by DPPH and ABTS assays, respectively), but also that the inhalation of sage EO with high borneol content by hospitalized patients could improve these patients' satisfaction.

4.
Plants (Basel) ; 11(7)2022 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-35406953

RESUMEN

Climate change will determine a sharp increase in carbon dioxide in the following years. To study the influence of elevated carbon dioxide on plants, we grew 13 different species and varieties from the Brassicaceae family at three carbon dioxide concentrations: 400, 800, and 1200 ppmv. The photosynthetic parameters (assimilation rate and stomatal conductance to water vapor) increase for all species. The emission of monoterpenes increases for plants grown at elevated carbon dioxide while the total polyphenols and flavonoids content decrease. The chlorophyll content is affected only for some species (such as Lipidium sativum), while the ß-carotene concentrations in the leaves were not affected by carbon dioxide.

5.
Plants (Basel) ; 10(11)2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34834852

RESUMEN

Many plants belonging to the Lamiaceae family are rich in essential oils (EOs) which are intensively used for aromatherapy, food and beverage flavoring, alternative medicine, cosmetics, and perfumery. Aerial parts of Thymus vulgaris L., Thymus pannonicus All., Lavandula angustifolia L., Lavandula x intermedia, Origanum vulgare L., and Origanum vulgare var. aureum L. were subjected to hydrodistillation, and both resulting fractions were analyzed. The purpose of this study was to determine the chemical composition, antioxidant activity, and total phenolic content of six essential oils and their corresponding hydrolats (HDs) through GC-MS and spectrophotometric analyses. Overall, 161 compounds were identified, some found exclusively in essential oils and others in hydrolats, making them individual products with specific end purposes. The total phenolic content was the highest for the Thymus vulgaris L. EOs (3022 ± mg GAE L-1), because of its high phenolic oxygenated monoterpenes content (thymol and carvacrol) and the smallest for the Lavandula angustifolia L. EOs (258.31 ± 44.29 mg GAE L-1), while hydrolats varied from 183.85 ± 0.22 mg GAE L-1 for Thymus vulgaris L. HD and 7.73 mg GAE L-1 for Thymus pannonicus All. HD. Significant antioxidant effects determined through DPPH• and ABTS•+ assays were also observed in samples with higher hydrophilic compounds. The highest antioxidant activity was determined for Thymus vulgaris L. EO and its corresponding HD. Although EOs are the principal traded economic product, HDs represent a valuable by-product that could still present intense antiseptic activities, similar to their corresponding EOs (thyme and oregano), or have multiple aromatherapy, cosmetics, and household applications (lavender and lavandin).

6.
Plants (Basel) ; 10(9)2021 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-34579365

RESUMEN

The purpose of this study was to analyze the chemical composition and antimicrobial activity of some thymus populations collected from five different locations in Western Romania. The chemical compositions of the essential oils (EOs) were studied through GC-MS, and the biological activities were evaluated using the microdilution method. The EO yield ranged between 0.44% and 0.81%. Overall, 60 chemical compounds were identified belonging to three chemotypes: thymol (three populations), geraniol (one population) and carvacrol (one population). Thymus vulgaris L. is distinguished by a high content of thymol, while species of spontaneous flora (Th. odoratissimus and Th. pulegioides) contain, in addition to thymol, appreciable amounts of carvacrol and geraniol. The antimicrobial activity of each the five oils was tested on Staphylococcus aureus (ATCC 25923), Streptococcus pyogenes (ATCC 19615), Esherichia coli (ATCC 25922), Pseudomonas aeruginosa (ATCC 27853), Shigella flexneri (ATCC 12022), Salmonella typhimurium (ATCC 14028), Haemophilus influenzae type B (ATCC 10211), Candida albicans (ATCC 10231) and Candida parapsilopsis (ATCC 22019). The EOs showed biological activity on Gram-positive/Gram-negative/fungal pathogens, the most sensitive strains proving to be S. pyogenes, S. flexneri, S. typhimurium and C. parapsilopsis with an MIC starting at 2 µL EO/100 µL. The species sensitive to the action of Thymus sp. from culture or spontaneous flora are generally the same, but it should be noted that T. odoratissimus has a positive inhibition rate higher than other investigated EOs, regardless of the administered oil concentration. To date, there is no research work presenting the chemical and antimicrobial profiling of T. odoratissimus and the correlations between the antimicrobial potential and chemical composition of wild and cultivated populations of thyme (Thymus sp.) growing in Western Romania.

7.
Molecules ; 26(13)2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-34279380

RESUMEN

Cannabis sativa L. (hemp) is a plant used in the textile industry and green building material industry, as well as for the phytoremediation of soil, medical treatments, and supplementary food products. The synergistic effect of terpenes, flavonoids, and cannabinoids in hemp extracts may mediate the biogenic synthesis of metal nanoparticles. In this study, the chemical composition of aqueous leaf extracts of three varieties of Romanian hemp (two monoecious, and one dioecious) have been determined by Fourier-Transformed Infrared spectroscopy (FT-IR), high-performance liquid chromatography, and mass spectrometry (UHPLC-DAD-MS). Then, their capability to mediate the green synthesis of silver nanoparticles (AgNPs) and their pottential antibacterial applications were evaluated. The average antioxidant capacity of the extracts had 18.4 ± 3.9% inhibition determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH•) and 78.2 ± 4.1% determined by 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS™) assays. The total polyphenolic content of the extracts was 1642 ± 32 mg gallic acid equivalent (GAE) L-1. After this, these extracts were reacted with an aqueous solution of AgNO3 resulting in AgNPs, which were characterized by UV-VIS spectroscopy, FT-IR, scanning electron microscopy (SEM-EDX), and dynamic light scattering (DLS). The results demonstrated obtaining spherical, stable AgNPs with a diameter of less than 69 nm and an absorbance peak at 435 nm. The mixture of extracts and AgNPs showed a superior antioxidant capacity of 2.3 ± 0.4% inhibition determined by the DPPH• assay, 88.5 ± 0.9% inhibition as determined by the ABTS•+ assay, and a good antibacterial activity against several human pathogens: Escherichia coli, Klebsiella pneumoniae, Pseudomonas fluorescens, and Staphylococcus aureus.


Asunto(s)
Antibacterianos/química , Cannabis/química , Tecnología Química Verde/métodos , Nanopartículas del Metal/química , Extractos Vegetales/química , Antioxidantes/química , Hojas de la Planta/química , Polifenoles/análisis , Plata/química
8.
Molecules ; 26(14)2021 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-34299656

RESUMEN

Chemical composition, antioxidant capacity, and antimicrobial activity of lavender essential oils (LEOs) extracted from three different varieties of Lavandula angustifolia Mill. (1-Moldoveanca 4, 2-Vis magic 10, and 3-Alba 7) have been determined. These plants previously patented in the Republic of Moldova were cultivated in an organic agriculture system in the northeastern part of Romania and then harvested in 3 consecutive years (2017-2019) to obtain the essential oils. From the inflorescences in the complete flowering stage, the LEOs were extracted by hydrodistillation. Then, their composition was analyzed by gas chromatography coupled with mass spectrometry (GC-MS) and by Fourier Transformed Infrared spectroscopy (FT-IR). The major identified constituents are as follows: linalool (1: 32.19-46.83%; 2: 29.93-30.97%; 3: 31.97-33.77%), linalyl acetate (1: 17.70-35.18%; 2: 27.55-37.13%; 3: 28.03-35.32%), and terpinen-4-ol (1: 3.63-7.70%; 2: 3.06-7.16%; 3: 3.10-6.53%). The antioxidant capacity as determined by ABTS and DPPH assays indicates inhibition, with the highest activity obtained for LEO var. Alba 7 from 2019. The in vitro antimicrobial activities of the LEOs and combinations were investigated as well, by using the disk diffusion method and minimum inhibitory concentration (MIC) against the Gram-positive bacterial strain Staphylococcus aureus (ATCC 6538), Gram-negative Pseudomonas aeruginosa (ATCC 27858), Escherichia coli (ATCC 25922), the yeast Candida albicans (ATCC 10231), and clinical isolates. Our results have shown that LEOs obtained from the three studied varieties of L. angustifolia manifest significant bactericidal effects against tested microorganisms (Staphylococcus aureus and Escherichia coli), and antifungal effects against Candida albicans. The mixture of LEOs (Var. Alba 7) and geranium, respectively, in tea tree EOs, in different ratios, showed a significant enhancement of the antibacterial effect against all the studied strains, except Pseudomonas aeruginosa.


Asunto(s)
Antiinfecciosos , Antioxidantes , Bacterias/crecimiento & desarrollo , Candida albicans/crecimiento & desarrollo , Lavandula/química , Aceites Volátiles , Antiinfecciosos/química , Antiinfecciosos/aislamiento & purificación , Antiinfecciosos/farmacología , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Antioxidantes/farmacología , Aceites Volátiles/química , Aceites Volátiles/aislamiento & purificación , Aceites Volátiles/farmacología
9.
Sci Rep ; 10(1): 21322, 2020 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-33288856

RESUMEN

Satureja hortensis is one of the representative plants from the Lamiaceae family, and its essential oil has been used in various applicative fields, from the food industry to aromatherapy. The changes that occur in heated samples at different temperatures (160, 175, 190 ºC) over different periods (0.5 and 2.5 h) in Satureja hortensis essential oil composition and chemical properties were evaluated. The results showed that the major chemical composition constituents of the investigated essential oil are γ-terpinene + α-terpinolene and carvacrol + p-cymene and the thermal behavior is dependent on the content. This composition drastically changes through the heating of the samples and causes significant changes in thermal behavior. The present study demonstrated that the concentration of carvacrol in S. hortensis essential oil is increasing after heating treatment, and the sample heated at 190 ºC for 2.5 h contained more than 91% carvacrol. This simple treatment is a rapid way to obtain carvacrol from the essential oil that has high potential as a natural preservative suitable for the food industry and alternative and complementary medicine.

10.
Molecules ; 25(23)2020 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-33287099

RESUMEN

This research was conducted in order to establish the effectiveness of two freeze-dried extracts obtained from blueberry processing byproducts resulting from juice manufacturing compared to butylated hydroxytoluene (BHT) in delaying the lipid oxidation of sunflower oil subjected to high-temperature convective heating at 180 °C up to 12 h under simulated frying conditions. The fruits were harvested from spontaneous flora of two regions of Romania, Arieseni (Alba County) and Paltinis (Sibiu County) and the blueberry byproducts extracts (BBE) were noted according to the origin place as ABBE and PBBE. The progress of lipid thermo-oxidation was investigated in terms of peroxide value (PV), p-anisidine value (p-AV), the response of TBA-malondialdehyde interactions assessed by thiobarbituric acid (TBA) method, the total oxidation (TOTOX) value and inhibition of oil oxidation (IO). The recorded data highlighted that BBE exhibit a high inhibitory response on lipid thermo-oxidation. The inhibitory effect was concentration-dependent, thus, the degree of lipid oxidation was in reverse related to the BBE dose. The exposure of the oil samples supplemented with 800 ppm BBE (ABBE, PBBE) to a high-temperature heating for 12 h led to a significant decrease of the assessed indices compared to additives-free sunflower oil sample as follows: PV (46%; 45%), p-AV (21%; 17%), TOTOX (27%; 24%), TBA value (25%; 11%). Regarding the impact of the origin on the potential of BBE to inhibit the lipid oxidative degradation, it was noted that ABBE derived from blueberries grown in a region with a milder climate with moderate precipitations and higher temperatures showed a stronger inhibitory effect on lipid thermo-oxidation than PBBE. A moderate level of 500 ppm BBE inhibited the lipid oxidation similar to 200 ppm BHT. The reported results reveal that BBE represent efficient natural antioxidants that could be successfully applied to improve the thermo-oxidative stability of sunflower oil used in various high-temperature food applications.


Asunto(s)
Antioxidantes/química , Arándanos Azules (Planta)/química , Frutas/química , Aceite de Girasol/química , Compuestos de Anilina/química , Hidroxitolueno Butilado/química , Calor , Malondialdehído/química , Oxidación-Reducción/efectos de los fármacos , Extractos Vegetales/química , Rumanía , Tiobarbitúricos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA