Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Synchrotron Radiat ; 29(Pt 3): 677-686, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35511001

RESUMEN

Nuclear resonance time domain interferometry (NR-TDI) is used to study the slow dynamics of liquids (that do not require Mössbauer isotopes) at atomic and molecular length scales. Here the TDI method of using a stationary two-line magnetized 57Fe foil as a source and a stationary single-line stainless steel foil analyzer is employed. The new technique of adding an annular slit in front of a single silicon avalanche photodiode detector enables a wide range of momentum transfers (1 to 100 nm-1 by varying the distance between the annular slits and sample) with a high count rate of up to 160 Hz with a Δq resolution of ±1.7 nm-1 at q = 14 nm-1. The sensitivity of this method in determining relaxation times is quantified and discussed. The Kohlrausch-Williams-Watts (KWW) model was used to extract relaxation times for glycerol. These relaxation times give insight into the dynamics of the electron density fluctuations of glycerol as a function of temperature and momentum transfers.

2.
J Synchrotron Radiat ; 28(Pt 2): 490-498, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33650561

RESUMEN

An experimental setup to measure X-ray photon correlation spectroscopy during continuous sample translation is presented and its effectiveness as a means to avoid sample damage in dynamics studies of protein diffusion is evaluated. X-ray damage from focused coherent synchrotron radiation remains below tolerable levels as long as the sample is translated through the beam sufficiently quickly. Here it is shown that it is possible to separate sample dynamics from the effects associated with the transit of the sample through the beam. By varying the sample translation rate, the damage threshold level, Dthresh = 1.8 kGy, for when beam damage begins to modify the dynamics under the conditions used, is also determined. Signal-to-noise ratios, Rsn ≥ 20, are obtained down to the shortest delay times of 20 µs. The applicability of this method of data collection to the next generation of multi-bend achromat synchrotron sources is discussed and it is shown that sub-microsecond dynamics should be obtainable on protein samples.


Asunto(s)
Proteínas , Sincrotrones , Rayos X
3.
Phys Chem Chem Phys ; 22(34): 19089-19099, 2020 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-32807995

RESUMEN

The electron density profile of bilayers of DPPC/cholesterol mixtures supported on semiconductor grade silicon substrates were studied with the objective of determining how the proximity of a solid interface modifies the phase diagram of mixed bilayers. The bilayers were studied in situ immersed in water via synchrotron X-ray reflectivity (XRR). Measurements were performed as a function of temperature through the main phase transition and cholesterol mole fractions up to 40%. Analysis of XRR yields the bilayer thickness, roughness and leaflet asymmetry. We find that the structure of the pure DPPC bilayers in the gel phase is in agreement with previous X-ray measurements of supported bilayers deposited via vesicle fusion and multilamellar vesicles but show more clearly defined features than measurements made on films formed using Langmuir-Blodget Langmuir-Shaffer (LB) deposition. Examination of bilayer thickness vs. temperature shows that the melting temperature for supported bilayers is shifted upwards by approximately 4 °C relative to multilamellar vesicles and that the melting temperature decreases with increasing cholesterol content up to 20%. For pure DPPC bilayers the leaflets melt in two stages with the distal leaflet melting first. For cholesterol concentrations of 10% and 20% there is no clear indication of separate melting. For 33% and 40% cholesterol content no clear transition is seen in the bilayer thickness, but an abrupt change in roughness indicates possible microdomain formation in the 40% cholesterol sample.


Asunto(s)
1,2-Dipalmitoilfosfatidilcolina/química , Colesterol/química , Membrana Dobles de Lípidos/química , Estructura Molecular , Sincrotrones , Temperatura de Transición , Agua/química , Rayos X
4.
Phys Rev E ; 97(2-1): 020601, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29548072

RESUMEN

The dynamics of concentrated suspensions of the eye-lens protein alpha crystallin have been measured using x-ray photon correlation spectroscopy. Measurements were made at wave vectors corresponding to the first peak in the hard-sphere structure factor and volume fractions close to the critical volume fraction for the glass transition. Langevin dynamics simulations were also performed in parallel to the experiments. The intermediate scattering function f(q,τ) could be fit using a stretched exponential decay for both experiments and numerical simulations. The measured relaxation times show good agreement with simulations for polydisperse hard-sphere colloids.

5.
Biophys J ; 110(6): 1355-66, 2016 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-27028645

RESUMEN

The cholesterol partitioning and condensing effect in the liquid-ordered (Lo) and liquid-disordered (Ld) phases were systematically investigated for ternary mixture lipid multilayers consisting of 1:1 1,2-dipalmitoyl-sn-glycero-3-phosphocholine/1,2-dioleoyl-sn-glycero-3-phosphocholine with varying concentrations of cholesterol. X-ray lamellar diffraction was used to deduce the electron density profiles of each phase. The cholesterol concentration in each phase was quantified by fitting of the electron density profiles with a newly invented basic lipid profile scaling method that minimizes the number of fitting parameters. The obtained cholesterol concentration in each phase versus total cholesterol concentration in the sample increases linearly for both phases. The condensing effect of cholesterol in ternary lipid mixtures was evaluated in terms of phosphate-to-phosphate distances, which together with the estimated cholesterol concentration in each phase was converted into an average area per molecule. In addition, the cholesterol position was determined to a precision of (±0.7Å) and an increase of disorder in the lipid packing in the Lo phase was observed for total cholesterol concentration of 20∼30%.


Asunto(s)
Colesterol/metabolismo , Membrana Dobles de Lípidos/química , Transición de Fase , 1,2-Dipalmitoilfosfatidilcolina/química , Humedad , Fosfatos/química , Electricidad Estática , Difracción de Rayos X
6.
Phys Chem Chem Phys ; 18(2): 1225-32, 2016 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-26661405

RESUMEN

Ternary lipid mixtures incorporating cholesterol are well-known to phase separate into liquid-ordered (L(o)) and liquid-disordered (L(d)) phases. In multilayers of these systems, the laterally phase separated domains register in columnar structures with different bilayer periodicities, resulting in hydrophobic mismatch energies at the domain boundaries. In this paper, we demonstrate via synchrotron-based X-ray diffraction measurements that the system relieves the hydrophobic mismatch at the domain boundaries by absorbing larger amounts of inter-bilayer water into the L(d) phase with lower d-spacing as the relative humidity approaches 100%. The lamellar repeat distance of the L(d) phase swells by an extra 4 Å, well beyond the equilibrium spacing predicted by the inter-bilayer forces. This anomalous swelling is caused by the hydrophobic mismatch energy at the domain boundaries, which produces a surprisingly long-range effect. We also demonstrate that the d-spacings of the lipid multilayers at 100% relative humidity do not change when bulk water begins to condense on the sample.


Asunto(s)
Colesterol/química , Humedad , Lípidos/química , Agua/química , Interacciones Hidrofóbicas e Hidrofílicas , Tamaño de la Partícula , Propiedades de Superficie
7.
Amino Acids ; 47(12): 2601-8, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26215735

RESUMEN

Alpha crystallin, a small heat-shock protein, has been studied extensively for its chaperone function. Alpha crystallin subunits are expressed in stress conditions and have been found to prevent apoptosis by inhibiting the activation of caspase pathway. Non-enzymatic glycation of protein leads to the formation of advanced glycation end-products (AGEs). These AGEs bind to receptors and lead to blocking the signaling pathways or cause protein precipitation as observed in aggregation-related diseases. Methylglyoxal (MGO) is one of the major glycating agents expressed in pathological conditions due to defective glycolysis pathway. MGO reacts rapidly with proteins, forms AGEs and finally leads to aggregation. The goal of this study was to understand the non-enzymatic glycation-induced structural damage in alpha crystallin using biophysical and spectroscopic characterization. This will help to develop better disease models for understanding the biochemical pathways and also in drug discovery.


Asunto(s)
Envejecimiento , Diabetes Mellitus/patología , Enfermedades Neurodegenerativas/patología , alfa-Cristalinas/química , Animales , Apoptosis , Catarata/patología , Bovinos , Modelos Animales de Enfermedad , Descubrimiento de Drogas , Productos Finales de Glicación Avanzada/metabolismo , Glucólisis , Glicosilación , Proteínas de Choque Térmico/metabolismo , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Cristalino/patología , Luz , Chaperonas Moleculares/metabolismo , Presbiopía/patología , Unión Proteica , Piruvaldehído/química , Dispersión de Radiación , Transducción de Señal , Espectrometría de Fluorescencia , Temperatura
8.
Phys Chem Chem Phys ; 17(5): 3570-6, 2015 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-25537423

RESUMEN

In this study, we have designed a compact sample chamber that can achieve accurate and continuous control of the relative humidity (RH) in the vicinity of 100%. A 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) multilayer can be used as a humidity sensor by measuring its inter-layer repeat distance (d-spacing) via X-ray diffraction. We convert from DOPC d-spacing to RH according to a theory given in the literature and previously measured data of DOPC multilamellar vesicles in polyvinylpyrrolidone (PVP) solutions. This curve can be used for calibration of RH close to 100%, a regime where conventional sensors do not have sufficient accuracy. We demonstrate that this control method can provide RH accuracies of 0.1 to 0.01%, which is a factor of 10-100 improvement compared to existing methods of humidity control. Our method provides fine tuning capability of RH continuously for a single sample, whereas the PVP solution method requires new samples to be made for each PVP concentration. The use of this cell also potentially removes the need for an X-ray or neutron beam to pass through bulk water if one wishes to work close to biologically relevant conditions of nearly 100% RH.

9.
Adv Mater ; 26(46): 7764-85, 2014 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-25236339

RESUMEN

The technique of X-ray Photon Correlation Spectroscopy (XPCS) is reviewed as a method for studying the relatively slow dynamics of materials on time scales ranging from microseconds to thousands of seconds and length scales ranging from microns down to nanometers. We focus on the application of this technique to study dynamical fluctuations of surfaces, interfaces and thin films. We first discuss instrumental issues such as the effects of partial coherence (or alternatively finite instrumental resolution) and optimization of signal-to-noise ratios in the experiments. We then review what has been learned from recent XPCS studies of capillary wave fluctuations on liquid surfaces and polymer films, of nanoparticles used as probes to study the interior dynamics of polymer films, of liquid crystals and multilamellar surfactant films, and of metal surfaces, and magnetic domain wall fluctuations in antiferromagnets. We then discuss studies of non-equilibrium dynamics described by 2-time correlation functions. Finally, we briefly speculate on possible future XPCS experiments at new synchrotron sources currently under development including studies of dynamics on time scales down to femtoseconds.

10.
Sci Rep ; 4: 6017, 2014 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-25109363

RESUMEN

The recent advent of hard x-ray free electron lasers (XFELs) opens new areas of science due to their exceptional brightness, coherence, and time structure. In principle, such sources enable studies of dynamics of condensed matter systems over times ranging from femtoseconds to seconds. However, the studies of "slow" dynamics in polymeric materials still remain in question due to the characteristics of the XFEL beam and concerns about sample damage. Here we demonstrate the feasibility of measuring the relaxation dynamics of gold nanoparticles suspended in polymer melts using X-ray photon correlation spectroscopy (XPCS), while also monitoring eventual X-ray induced damage. In spite of inherently large pulse-to-pulse intensity and position variations of the XFEL beam, measurements can be realized at slow time scales. The X-ray induced damage and heating are less than initially expected for soft matter materials.

11.
J Synchrotron Radiat ; 20(Pt 2): 332-8, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23412491

RESUMEN

The technique of speckle visibility spectroscopy has been employed for the measurement of dynamics using coherent X-ray scattering. It is shown that the X-ray contrast within a single exposure can be related to the relaxation time of the intermediate scattering function, and this methodology is applied to the diffusion of 72 nm-radius latex spheres in glycerol. Data were collected with exposure times as short as 2 ms by employing a resonant shutter. The weak scattering present for short exposures necessitated an analysis formalism based on the spatial correlation function of individual photon charge droplets on an area detector, rather than the usual methods employed for intensity correlations. It is demonstrated that this method gives good agreement between theory and experiment and thus holds promise for extending area-detector-based coherent scattering methods to the study of faster dynamics than previously obtainable.

12.
Phys Rev E Stat Nonlin Soft Matter Phys ; 84(4 Pt 1): 041914, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22181182

RESUMEN

We have fabricated a stack of five 1,2-dipalmitoyl-sn-3-phosphatidylethanolamine (DPPE) bilayers supported on a polished silicon substrate in excess water. The density profile of these stacks normal to the substrate was obtained through analysis of x-ray reflectivity. Near the substrate, we find the layer roughness and repeat spacing are both significantly smaller than values found in bulk multilayer systems. The reduced spacing and roughness result from suppression of lateral fluctuations due to the flat substrate boundary. The layer spacing decrease then occurs due to reduced Helfrich repulsion.


Asunto(s)
Membrana Dobles de Lípidos/química , Fluidez de la Membrana , Modelos Químicos , Modelos Moleculares , Fosfatidiletanolaminas/química , Simulación por Computador , Propiedades de Superficie , Temperatura
13.
J Synchrotron Radiat ; 14(Pt 6): 527-31, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17960036

RESUMEN

To determine the suitability of commonly used windows for small-angle X-ray scattering, a range of materials, including Kapton, (aluminized) Mylar, beryllium, high-purity aluminium foil, mica and silicon nitride have been studied. At small wavevector transfers, Q, in the range 2 x 10(-3) to 0.2 nm(-1), the scattering from Kapton, mica and beryllium is reasonably well described by power laws in Q with exponents of -3.25, -3.6 and -3.9, respectively. There are large variations in the scattering from mica, but a freshly cleaved natural mica window was by far the weakest scatterer. For applications where radiation in the infrared or visible range should be blocked, aluminized Mylar is the most suitable material. Both Mylar and Kapton can be used to make very simple demountable superfluid-tight windows using indium O-ring seals.

14.
Phys Rev E Stat Nonlin Soft Matter Phys ; 74(1 Pt 1): 010602, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16907050

RESUMEN

X-ray photon correlation spectroscopy was employed in a surface standing wave geometry in order to resolve the thermally driven in-plane dynamics at both the surface/vacuum (top) and polymer/polymer (bottom) interfaces of a thin polystyrene (PS) film on top of Poly(4-bromo styrene) (PBrS) and supported on a Si substrate. The top vacuum interface shows two relaxation modes: one fast and one slow, while the buried polymer-polymer interface shows a single slow mode. The slow mode of the top interface is similar in magnitude and wave vector dependence to the single mode of the buried interface. The dynamics are consistent with a low-viscosity mixed layer between the PS and PBrS and coupling of the capillary wave fluctuations between this layer and the PS.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...