Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS Negl Trop Dis ; 16(5): e0010340, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35503786

RESUMEN

BACKGROUND: Annual mass drug administrations (MDA) of ivermectin will strongly reduce Onchocerca volvulus microfilariae (mf) in the skin and in the onchocerciasis patients' eyes. Ivermectin treatment will also affect the expression of immunity in patients, such that activated immune defenses may help control and contribute to clearance of mf of O. volvulus. Longitudinal surveys are a prerequisite to determining the impact of ivermectin on the status of anti-parasite immunity, notably in risk zones where parasite transmission and active O. volvulus infections persist. METHODOLOGY/PRINCIPAL FINDINGS: Onchocerciasis patients were treated annually with ivermectin and their Onchocerca volvulus antigen (OvAg) specific IgG and cellular responses were investigated before and at 30 years post initial ivermectin treatment (30yPT). Repeated annual ivermectin treatments eliminated persisting O. volvulus microfilariae (mf) from the skin of patients and abrogated patent infections. The OvAg-specific IgG1 and IgG4 responses were diminished at 30yPT to the levels observed in endemic controls. Prior to starting ivermectin treatment, OvAg-induced cellular productions of IL-10, IFN-γ, CCL13, CCL17 and CCL18 were low in patients, and at 30yPT, cellular cytokine and chemokine responses increased to the levels observed in endemic controls. In contrast, mitogen(PHA)- induced IL-10, IFN-γ, CCL17 and CCL18 cellular production was diminished. This divergent response profile thus revealed increased parasite antigen-specific but reduced polyclonal cellular responsiveness in patients. The transmission of O. volvulus continued at the patients' location in the Mô river basin in central Togo 2018 and 2019 when 0.58% and 0.45%, respectively, of Simulium damnosum s.l. vector blackflies carried O. volvulus infections. CONCLUSIONS/SIGNIFICANCE: Repeated annual ivermectin treatment of onchocerciasis patients durably inhibited their patent O. volvulus infections despite ongoing low-level parasite transmission in the study area. Repeated MDA with ivermectin affects the expression of immunity in patients. O. volvulus parasite-specific antibody levels diminished to levels seen in infection-free endemic controls. With low antibody levels, antibody-dependent cellular cytotoxic responses against tissue-dwelling O. volvulus larvae will weaken. O. volvulus antigen inducible cytokine and chemokine production increased in treated mf-negative patients, while their innate responsiveness to mitogen declined. Such lower innate responsiveness in elderly patients could contribute to reduced adaptive immune responses to parasite infections and vaccines. On the other hand, increased specific cellular chemokine responses in mf-negative onchocerciasis patients could reflect effector cell activation against tissue invasive larval stages of O. volvulus. The annual Simulium damnosum s.l. biting rate observed in the Mô river basin was similar to levels prior to initiation of MDA with ivermectin, and the positive rtPCR results reported here confirm ongoing O. volvulus transmission.


Asunto(s)
Vólvulo Intestinal , Onchocerca volvulus , Oncocercosis , Parásitos , Simuliidae , Anciano , Animales , Citocinas , Humanos , Inmunoglobulina G , Interleucina-10 , Ivermectina/uso terapéutico , Microfilarias , Mitógenos/uso terapéutico , Onchocerca , Simuliidae/parasitología , Togo/epidemiología
2.
J Immune Based Ther Vaccines ; 9(1): 6, 2011 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-22004696

RESUMEN

BACKGROUND: The induction of sterile immunity and long lasting protection against malaria has been effectively achieved by immunization with sporozoites attenuated by gamma-irradiation or through deletion of genes. For mice immunized with radiation attenuated sporozoites (RAS) it has been shown that intrahepatic effector memory CD8+ T cells are critical for protection. Recent studies have shown that immunization with genetically attenuated parasites (GAP) in mice is also conferred by liver effector memory CD8+ T cells. FINDINGS: In this study we analysed effector memory cell responses after immunization of GAP that lack the P52 protein. We demonstrate that immunization with p52-GAP sporozoites also results in a strong increase of effector memory CD8+ T cells, even 6 months after immunization, whereas no specific CD4+ effector T cells response could be detected. In addition, we show that the increase of effector memory CD8+ T cells is specific for the liver and not for the spleen or lymph nodes. CONCLUSIONS: These results indicate that immunization of mice with P. berghei p52-GAP results in immune responses that are comparable to those induced by RAS or GAP lacking expression of UIS3 or UIS4, with an important role implicated for intrahepatic effector memory CD8+ T cells. The knowledge of the mediators of protective immunity after immunization with different GAP is important for the further development of vaccines consisting of genetically attenuated sporozoites.

3.
Malar J ; 7: 147, 2008 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-18673551

RESUMEN

BACKGROUND: The Camargue region is a former malaria endemic area, where potential Anopheles vectors are still abundant. Considering the importation of Plasmodium due to the high number of imported malaria cases in France, the aim of this article was to make some predictions regarding the risk of malaria re-emergence in the Camargue. METHODS: Receptivity (vectorial capacity) and infectivity (vector susceptibility) were inferred using an innovative probabilistic approach and considering both Plasmodium falciparum and Plasmodium vivax. Each parameter of receptivity (human biting rate, anthropophily, length of trophogonic cycle, survival rate, length of sporogonic cycle) and infectivity were estimated based on field survey, bibliographic data and expert knowledge and fitted with probability distributions taking into account the variability and the uncertainty of the estimation. Spatial and temporal variations of the parameters were determined using environmental factors derived from satellite imagery, meteorological data and entomological field data. The entomological risk (receptivity/infectivity) was calculated using 10,000 different randomly selected sets of values extracted from the probability distributions. The result was mapped in the Camargue area. Finally, vulnerability (number of malaria imported cases) was inferred using data collected in regional hospitals. RESULTS: The entomological risk presented large spatial, temporal and Plasmodium species-dependent variations. The sensitivity analysis showed that susceptibility, survival rate and human biting rate were the three most influential parameters for entomological risk. Assessment of vulnerability showed that among the imported cases in the region, only very few were imported in at-risk areas. CONCLUSION: The current risk of malaria re-emergence seems negligible due to the very low number of imported Plasmodium. This model demonstrated its efficiency for mosquito-borne diseases risk assessment.


Asunto(s)
Brotes de Enfermedades/estadística & datos numéricos , Insectos Vectores/parasitología , Malaria/epidemiología , Medición de Riesgo/métodos , Animales , Francia/epidemiología , Humanos , Mordeduras y Picaduras de Insectos/epidemiología , Malaria/transmisión , Plasmodium falciparum/crecimiento & desarrollo , Plasmodium vivax/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...