Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Res Sq ; 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39149485

RESUMEN

Mutations in SARS-CoV-2 variants of concern (VOCs) have expanded the viral host range beyond primates, and a limited range of other mammals, to mice, affording the opportunity to exploit genetically diverse mouse panels to model the broad range of responses to infection in patient populations. Here we surveyed responses to VOC infection in genetically diverse Collaborative Cross (CC) founder strains. Infection of wild-derived CC founder strains produced a broad range of viral burden, disease susceptibility and survival, whereas most other strains were resistant to disease despite measurable lung viral titers. In particular, CAST/EiJ, a wild-derived strain, developed high lung viral burdens, more severe lung pathology than seen in other CC strains, and a dysregulated cytokine profile resulting in morbidity and mortality. These inbred mouse strains may serve as a valuable platform to evaluate therapeutic countermeasures against severe COVID-19 and other coronavirus pandemics in the future.

3.
eNeuro ; 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39111836

RESUMEN

ATP1A3 is a Na,K-ATPase gene expressed specifically in neurons in the brain. Human mutations are dominant and produce an unusually wide spectrum of neurological phenotypes, most notably rapid-onset dystonia- parkinsonism (RDP) and alternating hemiplegia childhood (AHC). Here we compared heterozygotes of two mouse lines, a line with little or no expression (Atp1a3tm1Ling/+) and a knock-in expressing p.Asp801Tyr (D801Y, Atp1a3 +/D801Y). Both mouse lines had normal lifespans, but Atp1a3 +/D801Y had mild perinatal mortality contrasting with D801N mice (Atp1a3 +/D801N), which had high mortality. The phenotypes of Atp1a3tm1Ling/+ and Atp1a3 +/D801Y were different, and testing of each strain was tailored to its symptom range. Atp1a3tm1Ling/+ mice displayed little at baseline, but repeated ethanol intoxication produced hyperkinetic motor abnormalities not seen in littermate controls. Atp1a3 +/D801Y mice displayed robust phenotypes: hyperactivity, diminished posture consistent with hypotonia, and deficiencies in beam walk and wire hang tests. Symptoms also included qualitative motor abnormalities that are not well-quantified by conventional tests. Paradoxically, Atp1a3 +/D801Y showed sustained better performance than wild type on the accelerating rotarod. Atp1a3 +/D801Y mice were overactive in forced swimming, and afterwards had intense shivering, transient dystonic postures, and delayed recovery. Remarkably, Atp1a3 +/D801Y mice were refractory to ketamine anesthesia, which elicited hyperactivity and dyskinesia even at higher dose. Neither mouse line exhibited fixed dystonia (typical of RDP patients), spontaneous paroxysmal weakness (typical of AHC patients), or seizures, but had consistent, measurable neurological abnormalities. A gradient of variation supports the importance of studying multiple ATP1A3 mutations in animal models to understand the roles of this gene in human disease.Significance statement Different dominant mutations in the neuronal Na,K-ATPase cause an unusually wide range of symptoms in humans. Atp1a3 mouse models also differ greatly in mortality and in visible impairments, but conventional motor tests do not capture their manifestations very well. Two models were compared here with conventional, modified, and novel methods with some surprising results.

4.
bioRxiv ; 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38915588

RESUMEN

ECHS1 Deficiency (ECHS1D) is a rare and devastating pediatric disease that currently has no defined treatments. This disorder results from missense loss-of-function mutations in the ECHS1 gene that result in severe developmental delays, encephalopathy, hypotonia, and early death. ECHS1 enzymatic activity is necessary for the beta-oxidation of fatty acids and the oxidation of branched-chain amino acids within the inner mitochondrial matrix. The pathogenesis of disease remains unknown, however it is hypothesized that disease is driven by an accumulation of toxic metabolites from impaired valine oxidation. To expand our knowledge on disease mechanisms, a novel mouse model of ECHS1D was generated that possesses a disease-associated knock-in (KI) allele and a knock-out (KO) allele. To investigate the behavioral phenotype, a battery of testing was performed at multiple time points, which included assessments of learning, motor function, endurance, sensory responses, and anxiety. Neurological abnormalities were assessed using wireless telemetry EEG recordings, pentylenetetrazol (PTZ) seizure induction, and immunohistochemistry. Metabolic perturbations were measured within the liver, serum, and brain using mass spectrometry and magnetic resonance spectroscopy. To test disease mechanisms, mice were subjected to disease pathway stressors and then survival, body weight gain, and epilepsy were assessed. Mice containing KI/KI or KI/KO alleles were viable with normal development and survival, and the presence of KI and KO alleles resulted in a significant reduction in ECHS1 protein. ECHS1D mice displayed reduced exercise capacity and pain sensation. EEG analysis revealed increased slow wave power that was associated with perturbations in sleep. ECHS1D mice had significantly increased epileptiform EEG discharges, and were sensitive to seizure induction, which resulted in death of 60% of ECHS1D mice. Under basal conditions, brain structure was grossly normal, although histological analysis revealed increased microglial activation in aged ECHS1D mice. Increased dietary valine only affected ECHS1D mice, which significantly exacerbated seizure susceptibility and resulted in death. Lastly, acute inflammatory challenge drove regression and early lethality in ECHS1D mice. In conclusion, we developed a novel model of ECHS1D that may be used to further knowledge on disease mechanisms and to develop therapeutics. Our data suggests altered metabolic signaling and inflammation may contribute to epilepsy in ECHS1D, and these alterations may be attributed to impaired valine metabolism.

5.
Sci Transl Med ; 16(748): eadk1358, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38776392

RESUMEN

Blood-CNS barrier disruption is a hallmark of numerous neurological disorders, yet whether barrier breakdown is sufficient to trigger neurodegenerative disease remains unresolved. Therapeutic strategies to mitigate barrier hyperpermeability are also limited. Dominant missense mutations of the cation channel transient receptor potential vanilloid 4 (TRPV4) cause forms of hereditary motor neuron disease. To gain insights into the cellular basis of these disorders, we generated knock-in mouse models of TRPV4 channelopathy by introducing two disease-causing mutations (R269C and R232C) into the endogenous mouse Trpv4 gene. TRPV4 mutant mice exhibited weakness, early lethality, and regional motor neuron loss. Genetic deletion of the mutant Trpv4 allele from endothelial cells (but not neurons, glia, or muscle) rescued these phenotypes. Symptomatic mutant mice exhibited focal disruptions of blood-spinal cord barrier (BSCB) integrity, associated with a gain of function of mutant TRPV4 channel activity in neural vascular endothelial cells (NVECs) and alterations of NVEC tight junction structure. Systemic administration of a TRPV4-specific antagonist abrogated channel-mediated BSCB impairments and provided a marked phenotypic rescue of symptomatic mutant mice. Together, our findings show that mutant TRPV4 channels can drive motor neuron degeneration in a non-cell autonomous manner by precipitating focal breakdown of the BSCB. Further, these data highlight the reversibility of TRPV4-mediated BSCB impairments and identify a potential therapeutic strategy for patients with TRPV4 mutations.


Asunto(s)
Barrera Hematoencefálica , Células Endoteliales , Mutación con Ganancia de Función , Neuronas Motoras , Canales Catiónicos TRPV , Animales , Canales Catiónicos TRPV/metabolismo , Canales Catiónicos TRPV/genética , Neuronas Motoras/patología , Neuronas Motoras/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/patología , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/patología , Ratones , Degeneración Nerviosa/patología , Degeneración Nerviosa/genética , Fenotipo , Médula Espinal/patología , Médula Espinal/metabolismo
6.
PLoS Genet ; 20(4): e1011228, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38598567

RESUMEN

The laboratory mouse has served as the premier animal model system for both basic and preclinical investigations for over a century. However, laboratory mice capture only a subset of the genetic variation found in wild mouse populations, ultimately limiting the potential of classical inbred strains to uncover phenotype-associated variants and pathways. Wild mouse populations are reservoirs of genetic diversity that could facilitate the discovery of new functional and disease-associated alleles, but the scarcity of commercially available, well-characterized wild mouse strains limits their broader adoption in biomedical research. To overcome this barrier, we have recently developed, sequenced, and phenotyped a set of 11 inbred strains derived from wild-caught Mus musculus domesticus. Each of these "Nachman strains" immortalizes a unique wild haplotype sampled from one of five environmentally distinct locations across North and South America. Whole genome sequence analysis reveals that each strain carries between 4.73-6.54 million single nucleotide differences relative to the GRCm39 mouse reference, with 42.5% of variants in the Nachman strain genomes absent from current classical inbred mouse strain panels. We phenotyped the Nachman strains on a customized pipeline to assess the scope of disease-relevant neurobehavioral, biochemical, physiological, metabolic, and morphological trait variation. The Nachman strains exhibit significant inter-strain variation in >90% of 1119 surveyed traits and expand the range of phenotypic diversity captured in classical inbred strain panels. These novel wild-derived inbred mouse strain resources are set to empower new discoveries in both basic and preclinical research.


Asunto(s)
Variación Genética , Ratones Endogámicos , Fenotipo , Animales , Ratones , Ratones Endogámicos/genética , Genómica/métodos , Animales Salvajes/genética , Genoma/genética , Polimorfismo de Nucleótido Simple , Haplotipos , Secuenciación Completa del Genoma
7.
Nat Commun ; 15(1): 2497, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38509062

RESUMEN

Microglia play a pivotal role in neurodegenerative disease pathogenesis, but the mechanisms underlying microglia dysfunction and toxicity remain to be elucidated. To investigate the effect of neurodegenerative disease-linked genes on the intrinsic properties of microglia, we studied microglia-like cells derived from human induced pluripotent stem cells (iPSCs), termed iMGs, harboring mutations in profilin-1 (PFN1) that are causative for amyotrophic lateral sclerosis (ALS). ALS-PFN1 iMGs exhibited evidence of lipid dysmetabolism, autophagy dysregulation and deficient phagocytosis, a canonical microglia function. Mutant PFN1 also displayed enhanced binding affinity for PI3P, a critical signaling molecule involved in autophagic and endocytic processing. Our cumulative data implicate a gain-of-toxic function for mutant PFN1 within the autophagic and endo-lysosomal pathways, as administration of rapamycin rescued phagocytic dysfunction in ALS-PFN1 iMGs. These outcomes demonstrate the utility of iMGs for neurodegenerative disease research and implicate microglial vesicular degradation pathways in the pathogenesis of these disorders.


Asunto(s)
Esclerosis Amiotrófica Lateral , Células Madre Pluripotentes Inducidas , Enfermedades Neurodegenerativas , Humanos , Esclerosis Amiotrófica Lateral/metabolismo , Microglía/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Profilinas/metabolismo , Mutación
8.
Mol Ther Methods Clin Dev ; 32(1): 101193, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38352270

RESUMEN

Friedreich's ataxia (FRDA) is an autosomal-recessive disorder primarily attributed to biallelic GAA repeat expansions that reduce expression of the mitochondrial protein frataxin (FXN). FRDA is characterized by progressive neurodegeneration, with many patients developing cardiomyopathy that progresses to heart failure and death. The potential to reverse or prevent progression of the cardiac phenotype of FRDA was investigated in a mouse model of FRDA, using an adeno-associated viral vector (AAV8) containing the coding sequence of the FXN gene. The Fxnflox/null::MCK-Cre conditional knockout mouse (FXN-MCK) has an FXN gene ablation that prevents FXN expression in cardiac and skeletal muscle, leading to cardiac insufficiency, weight loss, and morbidity. FXN-MCK mice received a single intravenous injection of an AAV8 vector containing human (hFXN) or mouse (mFXN) FXN genes under the control of a phosphoglycerate kinase promoter. Compared to vehicle-treated FXN-MCK control mice, AAV-treated FXN-MCK mice displayed increases in body weight, reversal of cardiac deficits, and increases in survival without apparent toxicity in the heart or liver for up to 12 weeks postdose. FXN protein expression in heart tissue was detected in a dose-dependent manner, exhibiting wide distribution throughout the heart similar to wild type, but more speckled. These results support an AAV8-based approach to treat FRDA-associated cardiomyopathy.

9.
bioRxiv ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38260608

RESUMEN

KCNQ2 variants in children with neurodevelopmental impairment are difficult to assess due to their heterogeneity and unclear pathogenic mechanisms. We describe a child with neonatal-onset epilepsy, developmental impairment of intermediate severity, and KCNQ2 G256W heterozygosity. Analyzing prior KCNQ2 channel cryoelectron microscopy models revealed G256 as a node of an arch-shaped non-covalent bond network linking S5, the pore turret, and the ion path. Co-expression with G256W dominantly suppressed conduction by wild-type subunits in heterologous cells. Ezogabine partly reversed this suppression. G256W/+ mice have epilepsy leading to premature deaths. Hippocampal CA1 pyramidal cells from G256W/+ brain slices showed hyperexcitability. G256W/+ pyramidal cell KCNQ2 and KCNQ3 immunolabeling was significantly shifted from axon initial segments to neuronal somata. Despite normal mRNA levels, G256W/+ mouse KCNQ2 protein levels were reduced by about 50%. Our findings indicate that G256W pathogenicity results from multiplicative effects, including reductions in intrinsic conduction, subcellular targeting, and protein stability. These studies provide evidence for an unexpected and novel role for the KCNQ2 pore turret and introduce a valid animal model of KCNQ2 encephalopathy. Our results, spanning structure to behavior, may be broadly applicable because the majority of KCNQ2 encephalopathy patients share variants near the selectivity filter.

10.
bioRxiv ; 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38168388

RESUMEN

Loss of nuclear TDP-43 occurs in a wide range of neurodegenerative diseases, and specific mutations in the TARDBP gene that encodes the protein are linked to familial Frontal Temporal Lobar Dementia (FTD), and Amyotrophic Lateral Sclerosis (ALS). Although the focus has been on neuronal cell dysfunction caused by TDP-43 variants, TARDBP mRNA transcripts are expressed at similar levels in brain endothelial cells (ECs). Since increased permeability across the blood brain barrier (BBB) precedes cognitive decline, we postulated that altered functions of TDP-43 in ECs contributes to BBB dysfunction in neurodegenerative disease. To test this hypothesis, we examined EC function and BBB properties in mice with either knock-in mutations found in ALS/FTLD patients (TARDBPG348C and GRNR493X) or EC-specific deletion of TDP-43 throughout the endothelium (Cdh5(PAC)CreERT2; Tardbpff) or restricted to brain endothelium (Slco1c1(BAC)CreERT2; Tardbpff). We found that TARDBPG348C mice exhibited increased permeability to 3kDa Texas Red dextran and NHS-biotin, relative to their littermate controls, which could be recapitulated in cultured brain ECs from these mice. Nuclear levels of TDP-43 were reduced in vitro and in vivo in ECs from TARDBPG348C mice. This coincided with a reduction in junctional proteins VE-cadherin, claudin-5 and ZO-1 in isolated ECs, supporting a cell autonomous effect on barrier function through a loss of nuclear TDP-43. We further examined two models of Tardbp deletion in ECs, and found that the loss of TDP-43 throughout the endothelium led to systemic endothelial activation and permeability. Deletion specifically within the brain endothelium acutely increased BBB permeability, and eventually led to hallmarks of FTD, including fibrin deposition, microglial and astrocyte activation, and behavioral defects. Together, these data show that TDP-43 dysfunction specifically within brain ECs would contribute to the BBB defects observed early in the progression of ALS/FTLD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA