Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Cell Dev Biol ; 11: 1206049, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37576604

RESUMEN

Background: Leishmaniasis results in a wide spectrum of clinical manifestations, ranging from skin lesions at the site of infection to disseminated lesions in internal organs, such as the spleen and liver. While the ability of Leishmania-infected host cells to migrate may be important to lesion distribution and parasite dissemination, the underlying mechanisms and the accompanying role of host cells remain poorly understood. Previously published work has shown that Leishmania infection inhibits macrophage migration in a 2-dimensional (2D) environment by altering actin dynamics and impairing the expression of proteins involved in plasma membrane-extracellular matrix interactions. Although it was shown that L. infantum induces the 2D migration of dendritic cells, in vivo cell migration primarily occurs in 3-dimensional (3D) environments. The present study aimed to investigate the migration of macrophages and dendritic cells infected by Leishmania using a 3-dimensional environment, as well as shed light on the mechanisms involved in this process. Methods: Following the infection of murine bone marrow-derived macrophages (BMDM), human macrophages and human dendritic cells by L. amazonensis, L. braziliensis, or L. infantum, cellular migration, the formation of adhesion complexes and actin polymerization were evaluated. Results: Our results indicate that Leishmania infection inhibited 3D migration in both BMDM and human macrophages. Reduced expression of proteins involved in adhesion complex formation and alterations in actin dynamics were also observed in Leishmania-infected macrophages. By contrast, increased human dendritic cell migration in a 3D environment was found to be associated with enhanced adhesion complex formation and increased actin dynamics. Conclusion: Taken together, our results show that Leishmania infection inhibits macrophage 3D migration, while enhancing dendritic 3D migration by altering actin dynamics and the expression of proteins involved in plasma membrane extracellular matrix interactions, suggesting a potential association between dendritic cells and disease visceralization.

2.
Front Cell Infect Microbiol ; 12: 788196, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35463648

RESUMEN

Visceral leishmaniasis (VL) is often associated with hematologic manifestations that may interfere with neutrophil response. Lipophosphoglycan (LPG) is a major molecule on the surface of Leishmania promastigotes, which has been associated with several aspects of the parasite-vector-host interplay. Here, we investigated how LPG from Leishmania (L.) infantum, the principal etiological agent of VL in the New World, influences the initial establishment of infection during interaction with human neutrophils in an experimental setting in vitro. Human neutrophils obtained from peripheral blood samples were infected with either the wild-type L. infantum (WT) strain or LPG-deficient mutant (∆lpg1). In this setting, ∆lpg1 parasites displayed reduced viability compared to WT L. infantum; such finding was reverted in the complemented ∆lpg1+LPG1 parasites at 3- and 6-h post-infection. Confocal microscopy experiments indicated that this decreased survival was related to enhanced lysosomal fusion. In fact, LPG-deficient L. infantum parasites more frequently died inside neutrophil acidic compartments, a phenomenon that was reverted when host cells were treated with Wortmannin. We also observed an increase in the secretion of the neutrophil collagenase matrix metalloproteinase-8 (MMP-8) by cells infected with ∆lpg1 L. infantum compared to those that were infected with WT parasites. Furthermore, collagen I matrix degradation was found to be significantly increased in ∆lpg1 parasite-infected cells but not in WT-infected controls. Flow cytometry analysis revealed a substantial boost in production of reactive oxygen species (ROS) during infection with either WT or ∆lpg1 L. infantum. In addition, killing of ∆lpg1 parasites was shown to be more dependent on the ROS production than that of WT L. infantum. Notably, inhibition of the oxidative stress with Apocynin potentially fueled ∆lpg1 L. infantum fitness as it increased the intracellular parasite viability. Thus, our observations demonstrate that LPG may be a critical molecule fostering parasite survival in human neutrophils through a mechanism that involves cellular activation and generation of free radicals.


Asunto(s)
Leishmania infantum , Leishmaniasis Visceral , Parásitos , Animales , Glicoesfingolípidos/metabolismo , Humanos , Leishmaniasis Visceral/metabolismo , Neutrófilos/metabolismo , Parásitos/metabolismo , Especies Reactivas de Oxígeno/metabolismo
3.
J Vis Exp ; (174)2021 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-34424251

RESUMEN

Leishmania is an intracellular protozoan parasite that causes a broad spectrum of clinical manifestations, ranging from self-resolving localized cutaneous lesions to a highly fatal visceral form of the disease. An estimated 12 million people worldwide are currently infected, and another 350 million face risk of infection. It is known that host cells infected by Leishmania parasites, such as macrophages or dendritic cells, can migrate to different host tissues, yet how migration contributes to parasite dissemination and homing remains poorly understood. Therefore, assessing these parasites' ability to modulate host cell response, adhesion, and migration will shed light on mechanisms involved in disease dissemination and visceralization. Cellular migration is a complex process in which cells undergo polarization and protrusion, allowing them to migrate. This process, regulated by actin and tubulin-based microtubule dynamics, involves different factors, including the modulation of cellular adhesion to the substrate. Cellular adhesion and migration processes have been investigated using several models. Here, we describe a method to characterize the migratory aspects of host cells during Leishmania infection. This detailed protocol presents the differentiation and infection of dendritic cells, the analysis of host cell motility and migration, and the formation of adhesion complexes and actin dynamics. This in vitro protocol aims to further elucidate mechanisms involved in Leishmania dissemination within vertebrate host tissues and can also be modified and applied to other cell migration studies.


Asunto(s)
Leishmania , Leishmaniasis , Adhesión Celular , Comunicación Celular , Movimiento Celular , Humanos
4.
Microorganisms ; 9(5)2021 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-34069389

RESUMEN

The heat shock protein 90 (Hsp90) is thought to be an excellent drug target against parasitic diseases. The leishmanicidal effect of an Hsp90 inhibitor, 17-N-allylamino-17-demethoxygeldanamycin (17-AAG), was previously demonstrated in both in vitro and in vivo models of cutaneous leishmaniasis. Parasite death was shown to occur in association with severe ultrastructural alterations in Leishmania, suggestive of autophagic activation. We hypothesized that 17-AAG treatment results in the abnormal activation of the autophagic pathway, leading to parasite death. To elucidate this process, experiments were performed using transgenic parasites with GFP-ATG8-labelled autophagosomes. Mutant parasites treated with 17-AAG exhibited autophagosomes that did not entrap cargo, such as glycosomes, or fuse with lysosomes. ATG5-knockout (Δatg5) parasites, which are incapable of forming autophagosomes, demonstrated lower sensitivity to 17-AAG-induced cell death when compared to wild-type (WT) Leishmania, further supporting the role of autophagy in 17-AAG-induced cell death. In addition, Hsp90 inhibition resulted in greater accumulation of ubiquitylated proteins in both WT- and Δatg5-treated parasites compared to controls, in the absence of proteasome overload. In conjunction with previously described ultrastructural alterations, herein we present evidence that treatment with 17-AAG causes abnormal activation of the autophagic pathway, resulting in the formation of immature autophagosomes and, consequently, incidental parasite death.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...