Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Gastroenterology ; 163(5): 1377-1390.e11, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35934064

RESUMEN

BACKGROUND & AIMS: The circadian clock orchestrates ∼24-hour oscillations of gastrointestinal epithelial structure and function that drive diurnal rhythms in gut microbiota. Here, we use experimental and computational approaches in intestinal organoids to reveal reciprocal effects of gut microbial metabolites on epithelial timekeeping by an epigenetic mechanism. METHODS: We cultured enteroids in media supplemented with sterile supernatants from the altered Schaedler Flora (ASF), a defined murine microbiota. Circadian oscillations of bioluminescent PER2 and Bmal1 were measured in the presence or absence of individual ASF supernatants. Separately, we applied machine learning to ASF metabolomics to identify phase-shifting metabolites. RESULTS: Sterile filtrates from 3 of 7 ASF species (ASF360 Lactobacillus intestinalis, ASF361 Ligilactobacillus murinus, and ASF502 Clostridium species) induced minimal alterations in circadian rhythms, whereas filtrates from 4 ASF species (ASF356 Clostridium species, ASF492 Eubacterium plexicaudatum, ASF500 Pseudoflavonifactor species, and ASF519 Parabacteroides goldsteinii) induced profound, concentration-dependent phase shifts. Random forest classification identified short-chain fatty acid (SCFA) (butyrate, propionate, acetate, and isovalerate) production as a discriminating feature of ASF "shifters." Experiments with SCFAs confirmed machine learning predictions, with a median phase shift of 6.2 hours in murine enteroids. Pharmacologic or botanical histone deacetylase (HDAC) inhibitors yielded similar findings. Further, mithramycin A, an inhibitor of HDAC inhibition, reduced SCFA-induced phase shifts by 20% (P < .05) and conditional knockout of HDAC3 in enteroids abrogated butyrate effects on Per2 expression. Key findings were reproducible in human Bmal1-luciferase enteroids, colonoids, and Per2-luciferase Caco-2 cells. CONCLUSIONS: Gut microbe-generated SCFAs entrain intestinal epithelial circadian rhythms by an HDACi-dependent mechanism, with critical implications for understanding microbial and circadian network regulation of intestinal epithelial homeostasis.


Asunto(s)
Ritmo Circadiano , Microbioma Gastrointestinal , Humanos , Ratones , Animales , Ritmo Circadiano/fisiología , Microbioma Gastrointestinal/fisiología , Histona Desacetilasas , Células CACO-2 , Factores de Transcripción ARNTL , Propionatos , Ácidos Grasos Volátiles/metabolismo , Butiratos , Inhibidores de Histona Desacetilasas/farmacología , Luciferasas
2.
PLoS One ; 13(6): e0198434, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29856838

RESUMEN

BACKGROUND: Polymeric immunoglobulin receptor (pIgR) transport of secretory immunoglobulin A (SIgA) to mucosal surfaces is thought to promote gut integrity and immunity to Salmonella enterica serovar Typhimurium (S. Typhimurium), an invasive pathogen in mice. To elucidate potential mechanisms, we assessed intestinal barrier function and both oral and systemic S. Typhimurium virulence in pIgR knockout (KO) and wildtype (WT) mice. METHODS: In uninfected animals, we harvested jejunal segments for Ussing chamber analyses of transepithelial resistance (TER); mesenteric lymph nodes (mLN) for bacterial culture; and serum and stool for IgA. Separately, we infected mice either orally or intravenously (IV) with S. Typhimurium to compare colonization, tissue dynamics, and inflammation between KOs and WTs. RESULTS: Uninfected KOs displayed decreased TER and dramatically increased serum IgA and decreased fecal IgA vs. WT; however, KO mLNs yielded fewer bacterial counts. Remarkably, WTs challenged orally with S. Typhimurium exhibited increased splenomegaly, tissue colonization, and pro-inflammatory cytokines vs. pIgR KOs, which showed increased survival following either oral or IV infection. CONCLUSIONS: Absence of pIgR compromises gut integrity but does not exacerbate bacterial translocation nor S. Typhimurium infection. These findings raise the possibility that immune adaptation to increased gut permeability and elevated serum IgA in the setting of SIgA deficiency provides compensatory protection against invasive gut pathogens.


Asunto(s)
Receptores de Inmunoglobulina Polimérica/genética , Salmonelosis Animal/patología , Salmonella enterica/patogenicidad , Administración Oral , Animales , Citocinas/sangre , Heces/química , Inmunoglobulina A/análisis , Inmunoglobulina A/sangre , Inyecciones Intravenosas , Intestinos/patología , Ganglios Linfáticos/microbiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de Inmunoglobulina Polimérica/deficiencia , Salmonelosis Animal/microbiología , Salmonelosis Animal/mortalidad , Salmonella enterica/fisiología , Esplenomegalia/etiología , Tasa de Supervivencia
4.
Infect Immun ; 84(9): 2555-65, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27324484

RESUMEN

Enterohemorrhagic Escherichia coli O157:H7 (EHEC) is a foodborne pathogen that causes bloody diarrhea and hemolytic uremic syndrome throughout the world. A defining feature of EHEC pathogenesis is the formation of attaching and effacing (AE) lesions on colonic epithelial cells. Most of the genes that code for AE lesion formation, including a type three secretion system (T3SS) and effectors, are carried within a chromosomal pathogenicity island called the locus of enterocyte effacement (LEE). In this study, we report that a putative regulator, which is encoded in the cryptic E. coli type three secretion system 2 (ETT2) locus and herein renamed EtrB, plays an important role in EHEC pathogenesis. The etrB gene is expressed as a monocistronic transcript, and EtrB autoregulates expression. We provide evidence that EtrB directly interacts with the ler regulatory region to activate LEE expression and promote AE lesion formation. Additionally, we mapped the EtrB regulatory circuit in EHEC to determine a global role for EtrB. EtrB is regulated by the transcription factor QseA, suggesting that these proteins comprise a regulatory circuit important for EHEC colonization of the gastrointestinal tract.


Asunto(s)
Escherichia coli Enterohemorrágica/genética , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Sistemas de Secreción Tipo III/genética , Virulencia/genética , Colon/microbiología , Escherichia coli O157/genética , Factores de Transcripción/genética
5.
Mol Microbiol ; 101(2): 314-32, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27038276

RESUMEN

AraC Negative Regulators (ANR) suppress virulence genes by directly down-regulating AraC/XylS members in Gram-negative bacteria. In this study, we sought to investigate the distribution and molecular mechanisms of regulatory function for ANRs among different bacterial pathogens. We identified more than 200 ANRs distributed in diverse clinically important gram negative pathogens, including Vibrio spp., Salmonella spp., Shigella spp., Yersinia spp., Citrobacter spp., enterotoxigenic (ETEC) and enteroaggregative E. coli (EAEC), and members of the Pasteurellaceae. By employing a bacterial two hybrid system, pull down assays and surface plasmon resonance (SPR) analysis, we demonstrate that Aar (AggR-activated regulator), a prototype member of the ANR family in EAEC, binds with high affinity to the central linker domain of AraC-like member AggR. ANR-AggR binding disrupted AggR dimerization and prevented AggR-DNA binding. ANR homologs of Vibrio cholerae, Citrobacter rodentium, Salmonella enterica and ETEC were capable of complementing Aar activity by repressing aggR expression in EAEC strain 042. ANR homologs of ETEC and Vibrio cholerae bound to AggR as well as to other members of the AraC family, including Rns and ToxT. The predicted proteins of all ANR members exhibit three highly conserved predicted α-helices. Site-directed mutagenesis studies suggest that at least predicted α-helices 2 and 3 are required for Aar activity. In sum, our data strongly suggest that members of the novel ANR family act by directly binding to their cognate AraC partners.


Asunto(s)
Factor de Transcripción de AraC/genética , Genes araC/genética , Factor de Transcripción de AraC/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas de Unión al ADN/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica/genética , Genes araC/fisiología , Bacterias Gramnegativas/genética , Mutagénesis Sitio-Dirigida , Filogenia , Relación Estructura-Actividad , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Virulencia/genética
6.
Curr Opin Microbiol ; 29: 68-73, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26707739

RESUMEN

Growth of a microorganism in a host is essential for infection, and bacterial pathogens have evolved to utilize specific metabolites to enhance replication in vivo. Now, emerging data demonstrate that pathogens rely on microbiota-derived metabolites as a form of bacterial-bacterial communication to gain information about location within a host and modify virulence gene expression accordingly. Thus, metabolite-sensing is critical for pathogens to establish infection. Here, we highlight recent examples of how the foodborne pathogen enterohemorrhagic Escherichia coli O157:H7 (EHEC) exploits microbiota-derived metabolites to recognize the host intestinal environment and control gene expression that results in controlled expression of virulence traits.


Asunto(s)
Escherichia coli O157/metabolismo , Escherichia coli O157/patogenicidad , Microbioma Gastrointestinal/fisiología , Interacciones Microbianas , Animales , Infecciones por Escherichia coli/microbiología , Escherichia coli O157/crecimiento & desarrollo , Proteínas de Escherichia coli/metabolismo , Etanolamina/metabolismo , Regulación Bacteriana de la Expresión Génica , Interacciones Huésped-Patógeno , Humanos , Mucosa Intestinal/metabolismo , Intestinos/microbiología , Ratones , Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Virulencia/genética
7.
J Bacteriol ; 195(21): 4947-53, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23995630

RESUMEN

Ethanolamine (EA) metabolism is a trait associated with enteric pathogens, including enterohemorrhagic Escherichia coli O157:H7 (EHEC). EHEC causes severe bloody diarrhea and hemolytic uremic syndrome. EHEC encodes the ethanolamine utilization (eut) operon that allows EHEC to metabolize EA and gain a competitive advantage when colonizing the gastrointestinal tract. The eut operon encodes the transcriptional regulator EutR. Genetic studies indicated that EutR expression is induced by EA and vitamin B12 and that EutR promotes expression of the eut operon; however, biochemical evidence for these interactions has been lacking. We performed EA-binding assays and electrophoretic mobility shift assays (EMSAs) to elucidate a mechanism for EutR gene regulation. These studies confirmed EutR interaction with EA, as well as direct binding to the eutS promoter. EutR also contributes to expression of the locus of enterocyte effacement (LEE) in an EA-dependent manner. We performed EMSAs to examine EutR activation of the LEE. The results demonstrated that EutR directly binds the regulatory region of the ler promoter. These results present the first mechanistic description of EutR gene regulation and reveal a novel role for EutR in EHEC pathogenesis.


Asunto(s)
Metabolismo Energético , Escherichia coli O157/metabolismo , Escherichia coli O157/patogenicidad , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Factores de Transcripción/metabolismo , Escherichia coli O157/genética , Proteínas de Escherichia coli/genética , Etanolamina/metabolismo , Unión Proteica , Factores de Transcripción/genética , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...