Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 31(28): 40941-40957, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38837031

RESUMEN

Compressed leachate is a contaminated liquid containing various organic and inorganic pollutants produced in municipal refuse transfer stations, which pollute soil and groundwater, posing serious risks to the environment and human health. The Environmental Technology Co., Ltd. (Shenzhen, Guangdong Province, South China) treated compressed leachate obtained from a refuse transfer station. The chemical oxygen demand (COD) (641.2 mg/L) of treated compressed leachate did not meet the wastewater quality standards in China for discharge into municipal sewers (COD ≤ 500 mg/L) and the company's design discharge requirements (COD ≤ 400 mg/L). Therefore, their further in-depth treatment is necessary. To this end, waste tobacco leaves were used as the biotemplate herein, and Fe/La-co-doped TiO2 (xFe,yLa)-TTiO2(g) was synthesized using a solvothermal-assisted biotemplating method. The photocatalytic depth treatment of compressed leachate was performed under simulated solar light using the prepared catalysts. After (3Fe,3La)-TTiO2(g) treatment, the COD of the leachate decreased from 641.2 to 280.1 mg/L, and the COD removal rate was 1.2, 1.1, and 1.6 times higher than that of pure Fe-doped, La-doped and non-biological template TiO2, respectively. Characterization confirmed that the biological template endowed the catalyst with a unique morphology and high specific surface area. Its rich activity sites are conducive to enhancing the adsorption capacity of pollutants and providing an ideal place for photocatalytic reactions. Co-doping with iron and lanthanum ions altered the band structure of TiO2 and promoted the interconversion of Fe3+/Fe2+ and La3+/La2+ during photocatalysis. First-principles density functional theory simulations demonstrated that co-doping Fe and La in TiO2 created impurity levels that facilitated the transfer of photogenerated electrons. This study provides a new purification pathway for the depth treatment of compressed leachate.


Asunto(s)
Titanio , Contaminantes Químicos del Agua , Titanio/química , Contaminantes Químicos del Agua/química , Hierro/química , China , Catálisis , Aguas Residuales/química , Eliminación de Residuos Líquidos/métodos
2.
Front Immunol ; 15: 1340702, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38690275

RESUMEN

The extracellular matrix (ECM) is a complex three-dimensional structure composed of proteins, glycans, and proteoglycans, constituting a critical component of the tumor microenvironment. Complex interactions among immune cells, extracellular matrix, and tumor cells promote tumor development and metastasis, consequently influencing therapeutic efficacy. Hence, elucidating these interaction mechanisms is pivotal for precision cancer therapy. T lymphocytes are an important component of the immune system, exerting direct anti-tumor effects by attacking tumor cells or releasing lymphokines to enhance immune effects. The ECM significantly influences T cells function and infiltration within the tumor microenvironment, thereby impacting the behavior and biological characteristics of tumor cells. T cells are involved in regulating the synthesis, degradation, and remodeling of the extracellular matrix through the secretion of cytokines and enzymes. As a result, it affects the proliferation and invasive ability of tumor cells as well as the efficacy of immunotherapy. This review discusses the mechanisms underlying T lymphocyte-ECM interactions in the tumor immune microenvironment and their potential application in immunotherapy. It provides novel insights for the development of innovative tumor therapeutic strategies and drug.


Asunto(s)
Matriz Extracelular , Neoplasias , Linfocitos T , Microambiente Tumoral , Microambiente Tumoral/inmunología , Humanos , Matriz Extracelular/metabolismo , Matriz Extracelular/inmunología , Neoplasias/inmunología , Neoplasias/patología , Neoplasias/metabolismo , Neoplasias/terapia , Linfocitos T/inmunología , Linfocitos T/metabolismo , Animales , Comunicación Celular/inmunología , Inmunoterapia/métodos
3.
Chemosphere ; 359: 142308, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38734246

RESUMEN

Antimony (Sb) decontamination in water is necessary owing to the worsening pollution which seriously threatens human life safety. Designing bismuth-based photocatalysts with hydroxyls have attracted growing interest because of the broad bandgap and enhanced separation efficiency of photogenerated electron/hole pairs. Until now, the available photocatalysis information regarding bismuth-based photocatalysts with hydroxyls has remained scarce and the contemporary report has been largely limited to Bi3O(OH)(PO4)2 (BOHP). Herein, Bi3O(OH)(AsO4)2 (BOHAs), a novel ultraviolet photocatalyst, was fabricated via the co-precipitation method for the first time, and developed to simultaneous photocatalytic oxidation and adsorption of Sb(III). The rate constant of Sb(III) removal by the BOHAs was 32.4, 3.0, and 4.3 times higher than those of BiAsO4, BOHP, and TiO2, respectively, indicating that the introduction of hydroxyls could increase the removal of Sb(III). Additionally, the crucial operational parameters affecting the adsorption performance (catalyst dosage, concentration, pH, and common anions) were investigated. The BOHAs maintained 85% antimony decontamination of the initial yield after five successive cycles of photocatalysis. The Sb(III) removal involved photocatalytic oxidation of adsorbed Sb(III) and subsequent adsorption of the yielded Sb(V). With the acquired knowledge, we successfully applied the photocatalyst for antimony removal from industrial wastewater. In addition, BOHAs could also be powerful photocatalysts in the photodegradation of organic pollutants studies of which are ongoing. It reveals an effective strategy for synthesizing bismuth-based photocatalysts with hydroxyls and enhancing pollutants' decontamination.


Asunto(s)
Antimonio , Bismuto , Oxidación-Reducción , Aguas Residuales , Contaminantes Químicos del Agua , Antimonio/química , Adsorción , Bismuto/química , Aguas Residuales/química , Catálisis , Contaminantes Químicos del Agua/química , Procesos Fotoquímicos , Eliminación de Residuos Líquidos/métodos
4.
Arch Oral Biol ; 164: 106005, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38781743

RESUMEN

OBJECTIVES: This study aims to investigate the effects of type 17 immune response on the proliferation of oral epithelial cells in periodontitis. DESIGN: A time-dependent ligature induced periodontitis mouse model was utilized to explore gingival hyperplasia and the infiltration of interleukin 17A (IL-17A) positive cells. Immunohistochemistry and flow cytometry were employed to determine the localization and expression of IL-17A in the ligature induced periodontitis model. A pre-existing single-cell RNA sequencing dataset, comparing individuals affected by periodontitis with healthy counterparts, was reanalyzed to evaluate IL-17A expression levels. We examined proliferation markers, including proliferating cell nuclear antigen (PCNA), signal transducer and activator of transcription (STAT3), Yes-associated protein (YAP), and c-JUN, in the gingival and tongue epithelium of the periodontitis model. An anti-IL-17A agent was administered daily to observe proliferative changes in the oral mucosa within the periodontitis model. Cell number quantification, immunofluorescence, and western blot analyses were performed to assess the proliferative responses of human normal oral keratinocytes to IL-17A treatment in vitro. RESULTS: The ligature induced periodontitis model exhibited a marked infiltration of IL-17A-positive cells, alongside significant increase in thickness of the gingival and tongue epithelium. IL-17A triggers the proliferation of human normal oral keratinocytes, accompanied by upregulation of PCNA, STAT3, YAP, and c-JUN. The administration of an anti-IL-17A agent attenuated the proliferation in oral mucosa. CONCLUSIONS: These findings indicate that type 17 immune response, in response to periodontitis, facilitates the proliferation of oral epithelial cells, thus highlighting its crucial role in maintaining the oral epithelial barrier.


Asunto(s)
Inmunidad Adaptativa , Proliferación Celular , Células Epiteliales , Interleucina-17 , Periodontitis , Periodontitis/inmunología , Células Epiteliales/citología , Células Epiteliales/inmunología , Proliferación Celular/genética , Animales , Ratones , Modelos Animales de Enfermedad , Interleucina-17/genética , Interleucina-17/inmunología , Transporte de Proteínas/inmunología , Queratinocitos/citología , Queratinocitos/inmunología , Humanos , Línea Celular , Pérdida de Hueso Alveolar/inmunología , Inmunidad Adaptativa/inmunología
5.
Artif Organs ; 46(7): 1268-1280, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35191556

RESUMEN

BACKGROUND: Hypopharynx reconstruction after hypopharyngectomy is still a great challenge. Perfusion decellularization is for extracellular matrix (ECM) scaffolding and had been used in organ reconstruction. Our study aimed to prepare an acellular, natural, three-dimensional biological hypopharynx with vascular pedicle scaffold as the substitute materials to reconstruct hypopharynx. RESULT: Scanning electron microscope and histology staining showed that the decellularized hypopharynx with vascular pedicle scaffold retained intact native anatomical ECM structure. Myoblasts were observed on the recellularized scaffolds with bone marrow mesenchymal stem cells induced by 5-azacytidine implanted in the rabbit greater omentum by immunohistochemical analysis. CONCLUSION: The decellularized hypopharynx with vascular pedicle scaffold prepared by detergent perfusion in our study has a potential to be an alternative material to pharynx reconstruction.


Asunto(s)
Células Madre Mesenquimatosas , Andamios del Tejido , Animales , Matriz Extracelular/química , Hipofaringe/cirugía , Perfusión , Conejos , Ingeniería de Tejidos/métodos , Andamios del Tejido/química
6.
Oral Dis ; 28(6): 1539-1554, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34351044

RESUMEN

Salivary adenoid cystic carcinoma (SACC) is a malignant tumor, which is characterized by a higher incidence of distant metastasis. The aim of this study was to investigate the role and mechanism of protein kinase D1 (PKD1) in regulating the epithelial-mesenchymal transition (EMT) and promotes the metastasis in SACC. We analyzed the expression of PKD1 in 40 SACC patients and different metastatic potential cell lines. Then, we investigated whether the migration and growth of SACC were regulated by PKD1 using shRNA interference or inhibition of kinase active in vitro cell. Moreover, the mechanism by which PKD1 regulates the stability of Snail protein was determined. Finally, nude mice were used to testify the function of PKD1 via tail vein injection. PKD1 was correlated with metastasis and poor prognosis of SACC patients. PKD1 inhibition attenuated proliferation, migration, invasion, and EMT of SACC cells. Conversely, kinase active PKD1 could induce EMT and promoted cell migration in human HSG cell. Furthermore, downregulation of PKD1 regulated Snail via phosphorylation at Ser-11 on Snail protein and promotion of proteasome-mediated degradation, and reduced lung metastasis in vivo. Our results suggest that PKD1 induces the EMT and promotes the metastasis, which illustrate that PKD1 may be a potential prognostic biomarker and serve as a potential therapeutic target for SACC patients.


Asunto(s)
Carcinoma Adenoide Quístico , Proteína Quinasa C/metabolismo , Neoplasias de las Glándulas Salivales , Animales , Cadherinas/metabolismo , Carcinoma Adenoide Quístico/genética , Línea Celular Tumoral , Movimiento Celular/genética , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Ratones Desnudos , Invasividad Neoplásica/genética , Proteínas Quinasas/metabolismo , Neoplasias de las Glándulas Salivales/patología , Factores de Transcripción de la Familia Snail/metabolismo
7.
J Immunother ; 44(9): 339-347, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34545012

RESUMEN

Protein kinase D3 (PKD3) has been involved in various aspects of tumorigenesis and progression in many kinds of cancer types. However, whether PKD3 regulates immune escape in tumor microenvironment is rarely reported. Here, we explored the function and mechanism of PKD3 in reconstructing the immune escape niche of oral squamous cell carcinoma (OSCC). Both the Western blotting analysis in OSCC cells and the gene expression correlation analysis from The Cancer Genome Atlas shows that the expression of Fas and programmed cell death-ligand 1 (PD-L1) was positively correlated with PKD3, while major histocompatibility complex-I (MHC-I) was negatively correlated with PKD3. Knockdown of PKD3 significantly decreased the expression of Fas and PD-L1 and increased the expression of MHC-I. Furthermore, when PKD3 was overexpressed in oral precancerous cells, Fas, PD-L1, and MHC-I showed an opposite trend to that observed when PKD3 was knocked down. In addition, PKD3 knockdown decreased the secretion of transforming growth factor ß, CC-chemokine ligand 21, interleukin-10 by OSCC cells. Finally, the tumor cell antigen, which was extracted from PKD3 knockdown OSCC cells, significantly induced the growth and activation of T lymphocytes. These results demonstrate that PKD3 promotes the immune escape of OSCC cells by regulating the expression of Fas, PD-L1, MHC-I, transforming growth factor ß, CC-chemokine ligand 21, interleukin-10, and plays a key role in reconstructing the tumor immune escape niche.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Antígeno B7-H1/genética , Carcinoma de Células Escamosas/genética , Humanos , Complejo Mayor de Histocompatibilidad , Neoplasias de la Boca/genética , Proteína Quinasa C , Carcinoma de Células Escamosas de Cabeza y Cuello , Microambiente Tumoral
8.
Biomed Mater ; 16(5)2021 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-34384057

RESUMEN

Perfusion-decellularization was an interesting technique to generate a natural extracellular matrix (ECM) with the complete three-dimensional anatomical structure and vascular system. In this study, the esophageal ECM (E-ECM) scaffold was successfully constructed by perfusion-decellularized technique through the vascular system for the first time. And the physicochemical and biological properties of the E-ECM scaffolds were evaluated. The bone marrow mesenchymal stem cells (BMSCs) were induced to differentiate into myocytesin vitro. E-ECM scaffolds reseeded with myocytes were implanted into the greater omenta to obtain recellular esophageal ECM (RE-ECM), a tissue-engineered esophagus. The results showed that the cells of the esophagi were completely and uniformly removed after perfusion. E-ECM scaffolds retained the original four-layer organizational structure and vascular system with excellent biocompatibility. And the E-ECM scaffolds had no significant difference in mechanical properties comparing with fresh esophagi,p> 0.05. Immunocytochemistry showed positive expression ofα-sarcomeric actin, suggesting that BMSCs had successfully differentiated into myocytes. Most importantly, we found that in the RE-ECM muscularis, the myocytes regenerated linearly and continuously and migrated to the deep, and the tissue vascularization was obvious. The cell survival rates at 1 week and 2 weeks were 98.5 ± 3.0% and 96.4 ± 4.6%, respectively. It was demonstrated that myocytes maintained the ability for proliferation and differentiation for at least 2 weeks, and the cell activity was satisfactory in the RE-ECM. It follows that the tissue-engineered esophagus based on perfusion-decellularized technique and mesenchymal stem cells has great potential in esophageal repair. It is proposed as a promising alternative for reconstruction of esophageal defects in the future.


Asunto(s)
Matriz Extracelular Descelularizada/química , Esófago , Células Madre Mesenquimatosas/citología , Ingeniería de Tejidos/métodos , Animales , Células Cultivadas , Esófago/química , Esófago/citología , Esófago/metabolismo , Masculino , Perfusión , Conejos
9.
Front Oncol ; 11: 680221, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34249722

RESUMEN

The protein kinase D (PKD) family is a family of serine-threonine kinases that are members of the calcium/calmodulin-dependent kinase (CaMK) superfamily. PKDs have been increasingly implicated in multiple pivotal cellular processes and pathological conditions. PKD dysregulation is associated with several diseases, including cancer, inflammation, and obesity. Over the past few years, small-molecule inhibitors have emerged as alternative targeted therapy with fewer adverse side effects than currently available chemotherapy, and these specifically targeted inhibitors limit non-specific toxicities. The successful development of PKD inhibitors would significantly suppress the growth and proliferation of various cancers and inhibit the progression of other diseases. Various PKD inhibitors have been studied in the preclinical setting. In this context, we summarize the PKD inhibitors under investigation and their application for different kinds of diseases.

10.
Cancer Biomark ; 31(4): 317-328, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33896830

RESUMEN

BACKGROUND: Oral squamous cell carcinoma (OSCC) usually originates from oral potentially malignant disorders (OPMD), such as oral leukoplakia (OLK) and oral lichen planus (OLP). Identifying biomarkers for the early diagnosis and evaluation of malignant transformation in OPMD could improve the survival rate of OSCC patients. OBJECTIVE: The present study aimed to screen for potential salivary biomarkers for evaluating the malignant transformation of OPMD. METHODS: Salivary proteases from OLK and OSCC patients or healthy donors and proteases in cultural medium from DOK and Cal-27 cells were detected with a human protease array kit. The concentrations of the salivary Kallikrein 5 (KLK5) and urokinase-type plasminogen activator (uPA) proteases were measured by ELISA. Receiver operating characteristics (ROC) to determine the potential value of these proteases in clinical diagnosis were calculated using SPSS software. Immunohistochemistry was used to detect the KLK5 and uPA expression in the oral organizations. RESULTS: The salivary protease spectrum was different among patients with OLK and OSCC and healthy donors. KLK5 and uPA levels in saliva tended to increase as the disease progressed (healthy < OPMD [OLK and OLP] < OSCC). ROC curves showed the optimum diagnostic cutoffs for KLK5 as a biomarker for OLK, OLP, and OSCC were 5.97, 6.03, and 9.45 pg/mL, respectively, while the cutoffs for uPA were 17.19, 17.26, and 20.96 pg/mL. Their combined analysis showed a higher sensitivity for the differential diagnosis of disease. Furthermore, higher levels of KLK5 and uPA were observed in OSCC tissues than in OLK and OLP. CONCLUSIONS: Salivary KLK5 and uPA are potential biomarkers for evaluating OLK and OLP malignant transformation and early diagnosis of OSCC.


Asunto(s)
Carcinoma de Células Escamosas/metabolismo , Calicreínas/metabolismo , Leucoplasia Bucal/metabolismo , Liquen Plano Oral/metabolismo , Neoplasias de la Boca/metabolismo , Saliva/metabolismo , Activador de Plasminógeno de Tipo Uroquinasa/metabolismo , Biomarcadores de Tumor/metabolismo , Estudios de Casos y Controles , Transformación Celular Neoplásica , Humanos , Liquen Plano Oral/genética
11.
AMB Express ; 9(1): 52, 2019 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-31004250

RESUMEN

The Editor-in-Chief has retracted this article (Wang et al. 2018) because the authors do not have ownership of the data they report. An investigation by the Commonwealth Scientific and Industrial Research Organisation (CSIRO) has concluded that the data reported in this article are the sole property of the CSIRO. Mingbo Wu agrees with this retraction. Dan Wang, Yao Liu, Die Lv, Xueli Hu, Qiumei Zhong and Ye Zhao have not responded to correspondence about this retraction.

12.
AMB Express ; 8(1): 147, 2018 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-30232563

RESUMEN

Tannases can catalyze the hydrolysis of galloyl ester and depside bonds of hydrolysable tannins to release gallic acid and glucose, but tannases from different species have different substrate specificities. Our prior studies found that tannase from Lactobacillus plantarum (LP-tan) performed a higher esterase activity, while the tannase from Streptomyces sviceus (SS-tan) performed a higher depsidase activity; but the molecular mechanism is not elucidated. Based on the crystal structure of LP-tan and the amino acid sequences alignment between LP-tan and SS-tan, we found that the sandwich structure formed by Ile206-substrate-Pro356 in LP-tan was replaced with Ile253-substrate-Gly384 in SS-tan, and the flap domain (amino acids: 225-247) formed in LP-tan was missed in SS-tan, while a flap-like domain (amino acids: 93-143) was found in SS-tan. In this study, we investigated the functional role of sandwich structure and the flap (flap-like) domain in the substrate specificity of tannase. Site-directed mutagenesis was used to disrupt the sandwich structure in LP-tan (P356G) and rebuilt it in SS-tan (G384P). The flap in LP-tan and the flap-like domain in SS-tan were deleted to construct the new variants. The activity assay results showed that the sandwich and the flap domain can help to catalytic the ester bonds, while the flap-like domain in SS-tan mainly worked on the depside bonds. Enzymatic characterization and kinetics data showed that the sandwich and the flap domain can help to catalytic the ester bonds, while the flap-like domain in SS-tan may worked on the depside bonds.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA