Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microb Ecol ; 86(4): 2934-2948, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37667132

RESUMEN

The plant's endophytic fungi play an important role in promoting host development and metabolism. Studies have shown that the factors affecting the assembly of the endophyte community mainly include host genotype, vertical transmission, and soil origin. However, we do not know the role of vertically transmitted endohytic fungi influences on the host-plant's endophytic community assembly. Salvia miltiorrhiza from three production areas were used as research objects; we constructed three production area genotypes of S. miltiorrhiza regenerated seedlings simultaneously. Based on high-throughput sequencing, we analyzed the effects of genotype, soil origin, and vertical transmission on endophytic fungal communities. The results show that the community of soil origins significantly affected the endophytic fungal community in the regenerated seedlings of S. miltiorrhiza. The influence of genotype on community composition occurs through a specific mechanism. Genotype may selectively screen certain communities into the seed, thereby exerting selection pressure on the community composition process of offspring. As the number of offspring increases gradually, the microbiota, controlled by genotype and transmitted vertically, stabilizes, ultimately resulting in a significant effect of genotype on community composition.Furthermore, we observed that the taxa influencing the active ingredients are also selected as the vertically transmitted community. Moreover, the absence of an initial vertically transmitted community in S. miltiorrhiza makes it more vulnerable to infection by pathogenic fungi. Therefore, it is crucial to investigate and comprehend the selection model of the vertically transmitted community under varying genotypes and soil conditions. This research holds significant implications for enhancing the quality and yield of medicinal plants and economic crops.


Asunto(s)
Microbiota , Salvia miltiorrhiza , Salvia miltiorrhiza/genética , Salvia miltiorrhiza/metabolismo , Hongos/genética , Endófitos/genética , Microbiota/genética , Suelo , Plantones , Raíces de Plantas/microbiología
2.
Front Plant Sci ; 13: 984483, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36247635

RESUMEN

Polygonum hydropiper, is a plant of the Persicaria genus, which is commonly used to treat various diseases, including gastrointestinal disorders, neurological disorders, inflammation, and diarrhea. However, because of different local standards of P. hydropiper, people often confuse it with Polygonum lapathifolium L. and other closely related plants. This poses a serious threat to the safety and efficacy of the clinical use of P. hydropiper. This study aims to determine the six active ingredients of P. hydropiper and P. lapathifolium. Then the endophytic fungi and rhizosphere soil of the two species were sequenced by Illumina Miseq PE300. The results show significant differences between the community composition of the leaves, stems, and roots of the P. hydropiper and the P. lapathifolium in the same soil environment. Of the six secondary metabolites detected, five had significant differences between P. hydropiper and P. lapathifolium. Then, we evaluated the composition of the significantly different communities between P. hydropiper and P. lapathifolium. In the P. hydropiper, the relative abundance of differential communities in the leaves was highest, of which Cercospora dominated the differential communities in the leaves and stem; in the P. lapathifolium, the relative abundance of differential community in the stem was highest, and Cladosporium dominated the differential communities in the three compartments. By constructing the interaction network of P. hydropiper and P. lapathifolium and analyzing the network nodes, we found that the core community in P. hydropiper accounted for 87.59% of the total community, dominated by Cercospora; the core community of P. lapathifolium accounted for 19.81% of the total community, dominated by Sarocladium. Of these core communities, 23 were significantly associated with active ingredient content. Therefore, we believe that the community from Cercospora significantly interferes with recruiting fungal communities in P. hydropiper and affects the accumulation of secondary metabolites in the host plant. These results provide an essential foundation for the large-scale production of P. hydropiper. They indicate that by colonizing specific fungal communities, secondary metabolic characteristics of host plants can be helped to be shaped, which is an essential means for developing new medicinal plants.

3.
Int J Gen Med ; 15: 1677-1687, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35210837

RESUMEN

PURPOSE: Colon cancer is the most commonly diagnosed gastrointestinal cancer. This research intended to evaluate the prognostic values of LINC01006 and miR-3199 for colon cancer and their effects on cell physiology. PATIENTS AND METHODS: LINC01006 and miR-3199 expression levels were determined by RT-qPCR. Patients' 5-year cumulative survival rate was analyzed by Kaplan-Meier curves with the Log rank test. Chi-square test and multivariate Cox regression analysis were used to access the clinical significance. CCK-8 assay, transwell assay, and TUNEL assays were used to monitor the change of cell proliferation, invasion, migration, and apoptosis. RESULTS: The expression level of LINC01006 was increased while miR-3199 was decreased in colon tissues and cells compared to normal ones. This dysregulated expression was correlated with T stage (P = 0.002) and N stage (P = 0.009). High LINC01006 level (HR = 4.048, 95%: 1.502-10.911, P = 0.006) or low miR-3199 level (HR = 3.421, 95% CI: 1.254-9.330, P = 0.016) was outstanding for predicting poor prognosis in patients with colon cancer. Downregulation of LINC01006 reduced cell proliferation, invasion, and migration but induced cell apoptosis (P < 0.05). CONCLUSION: LINC01006 knockdown showed anti-proliferative, anti-metastatic, and apoptotic-induced effects on colon cancer cells. This study contributes to research on promising prognostic biomarkers of colon cancer and might give way to further investigation of alternative tumor targets.

4.
Front Plant Sci ; 12: 740456, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34858448

RESUMEN

"Breeding on mountains, cultivation in dam areas" is a unique propagation method for the vegetatively propagated plant Ligusticum chuanxiong, including two transplants between the mountain and the dam area. It is well known that the environment can influence the endophytic community structure of plants. However, the change of host endophytic flora caused by transplanting in different places and its influence on asexual reproduction are still poorly understood. We carried out three cycles of cultivation experiments on L. chuanxiong and collected stem nodes (LZ), immature rhizomes (PX), medicinal rhizomes (CX), and rhizosphere. High-throughput sequencing was performed to analyze the endophytic fungi in all samples. We observed that the diversity and richness of endophytic fungi in L. chuanxiong increased as a result of transplanting cultivation from dam areas to mountains. Local transplantation caused minor changes in the endophytic fungus structure of L. chuanxiong, while remote transplantation caused significant changes. Compared with LZ after breeding in the dam area, the LZ after breeding on mountains has more abundant Gibberella, Phoma, Pericona, Paraphoma, and Neocosmospora. The regular pattern of the relative abundance of endophytic fungi is consistent with that of the fungus in the soil, while there are also some cases that the relative abundance of endophytic fungi is the opposite of that of soil fungi. In addition, there is a significant correlation among certain kinds of endophytic fungi whether in the soil or the plants. We have isolated more gibberellin-producing and auxin-producing fungi in the LZ cultivated in the mountains than that in the LZ cultivated in the dam area. The results of pot experiments showed that the three fungi isolated from LZ cultivated in mountainous areas can promote the development of shoots, stem nodes, and internodes of LZ, and increase the activity of plant peroxidase, catalase, phenylalanine ammonia lyase, and other enzymes. We can conclude that transplantation leads to the recombination of the host endophytic fungus, the more significant the difference in the environment is, the greater the reorganization caused by transplanting. Reorganization is determined by the soil environment, hosts, and the interaction of microorganisms. Remote transplantation is a crucial opportunity to reshuffle the micro-ecological structure of the asexual reproduction of plants, and regulate the growth, development, and resistance of plants, and prevent germplasm degradation caused by asexual reproduction.

5.
Front Pharmacol ; 11: 583651, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33101037

RESUMEN

Aromatic Chinese herbs have been used to prevent plagues since ancient times. Traditional Chinese medicine has unique advantages in the prevention and treatment of epidemic diseases. According to the traditional Chinese medicine treatment plan in the National COVID-19 Diagnosis and Treatment Plan (Trial Seventh Edition) of the National Health Commission, Chinese patent medicines or prescriptions rich in aromatic Chinese herbs are selected for prevention and treatment during the period of medical observation, clinical treatment, and recovery of confirmed COVID-19 patients. Some local health committees or traditional Chinese medicine administrations recommend a variety of other ways of using traditional aromatic Chinese herbs to prevent and cure COVID-19. These involve external fumigation, use of moxibustion, and wearing of sachet. The efficacy of aromatic Chinese herbs plays a decisive role in the prevention and treatment of COVID-19. The unique properties, chemical composition, and mechanism of action of aromatic Chinese herbs are worthy of extensive and in-depth experimental and clinical research. The findings are expected to provide a reference for follow-up treatment of novel coronavirus and the development of corresponding drugs. In 2003, Dayuan-Yin produced excellent results in the treatment of the SARS virus. Individually, 112 confirmed cases were administered this drug between January and April 2003, and more than 93.7% of the patients showed noticeable mitigation of the symptoms, as well as recovery. Dayuan-Yin also was selected as one of the nationally recommended prescriptions for the COVID-19. Based on the national recommendation of Dayuan-Yin prescription, this review discusses the role of volatile components in the prevention and treatment of COVID-19, and speculates the possible mechanism of action, so as to provide a basis for the prevention and treatment of COVID-19.

6.
Arch Oral Biol ; 87: 54-61, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29268145

RESUMEN

OBJECTIVE: The aim of this study is to investigate the role of the WNT7B protein in the migration and differentiation of human dental pulp cells (HDPCs). DESIGN: The effect of recombinant human WNT7B (rhWNT7B) on the proliferation and migration of HDPCs was evaluated by 5-ethynyl-2'-deoxyuridine (EdU), immunofluorescence staining of Ki67, flow cytometry and scratch assay; the differentiation of HDPCs was measured by alkaline phosphatase (ALP) staining, alizarin red staining, ALP activity, qPCR and western blot. The activation of the WNT/beta-catenin (WNT/ß-catenin) and c-Jun N-terminal kinase (JNK) pathways was analysed by western blot, immunocytochemistry and dual luciferase assays. XAV939 and SP600125,the inhibitors of the WNT/ß-catenin and JNK pathways, were further applied to verify the mechanism. RESULTS: rhWNT7B repressed the proliferation but did not affect the apoptosis of HDPCs. In the presence of rhWNT7B, ALP and alizarin red staining were increased substantially in the HDPCs with osteogenic induction; the gene expression of Runx2 and Col1 in HDPCs was quite elevated compared with that induced in osteogenic medium without WNT7B measured by qPCR; The ALP activity was also increased with rhWNT7B stimulation in HDPCs after 7-day odontogenic culture; Western blot revealed that the expression of dentin sialophosphoprotein (DSPP) of HDPCs was up-regulated significantly with the addition of WNT7B as well. Further study showed that rhWNT7B activated the WNT/ß-catenin and JNK signalling pathways in the differentiation of HDPCs. XAV939 and SP600125 can partly offset the effect of the WNT7B-induced differentiation of HDPCs. CONCLUSION: WNT7B promoted the differentiation of HDPCs partly through the WNT/ß-catenin and JNK signalling pathways.


Asunto(s)
Diferenciación Celular/fisiología , Movimiento Celular/fisiología , Pulpa Dental/citología , Sistema de Señalización de MAP Quinasas/fisiología , Proteínas Wnt/metabolismo , Vía de Señalización Wnt , beta Catenina/metabolismo , Fosfatasa Alcalina/metabolismo , Western Blotting , Citometría de Flujo , Humanos , Inmunohistoquímica , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Odontogénesis/fisiología , Reacción en Cadena en Tiempo Real de la Polimerasa , Coloración y Etiquetado
7.
mSphere ; 1(6)2016.
Artículo en Inglés | MEDLINE | ID: mdl-28066812

RESUMEN

While investigation of the microbiome on natural oral surfaces has generated a wealth of information, few studies have examined the microbial communities colonizing dentures and their relationship to oral health. To address this knowledge gap, we characterized the bacterial community associated with dentures and remaining teeth in healthy individuals and patients with denture stomatitis. The microbiome compositions of matched denture and tooth plaque samples of 10 healthy individuals and 9 stomatitis patients were determined by 16S rRNA gene pyrosequencing. The microbial communities colonizing dentures and remaining teeth in health and disease were very similar to each other. Matched denture and tooth samples from the same individuals shared a significantly higher percentage of identical phylotypes than random pairs of samples from different study participants. Despite these overall similarities, several bacterial phylotypes displayed discrete health- and stomatitis-associated denture colonization, while others were distinct in health and disease independently of the surface. Certain phylotypes exhibited differential colonization of dentures and teeth independently of denture health status. In conclusion, denture and natural tooth surfaces in health and stomatitis harbor similar bacterial communities. Individual-related rather than surface-specific factors play a significant role in the bacterial phylotype composition colonizing dentures and teeth. This individual-specific mutual influence on denture and tooth surface colonization could be an important factor in maintaining oral health in denture wearers. Discrete differences in colonization patterns for distinct genera and phylotypes warrant further studies regarding their potential involvement or utility as specific indicators of health and disease development in denture-wearing individuals. IMPORTANCE Denture stomatitis is a prevalent inflammatory condition of the mucosal tissue in denture wearers that is triggered by microorganisms. While Candida has been extensively studied for its role in stomatitis etiology, the bacterial component largely remains to be investigated. Our data show that certain types of bacteria are significantly associated with denture health and disease. Furthermore, the bacterial communities residing on the teeth and dentures of the same person are similar to each other independently of the surface, and thus, denture health could impact the maintenance of remaining teeth and vice versa.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...