Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Bioorg Chem ; 152: 107726, 2024 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-39182256

RESUMEN

Fusicoccane (FC)-type diterpenoids are a class of diterpenoids characterized by a unique 5-8-5 ring system and exhibit diverse biological activities. Recently, we identified a novel FC-type diterpene synthase MgMS, which produces a myrothec-15(17)-en-7-ol (1) hydrocarbon skeleton, however, its tailoring congeners have not been elucidated. Here, we discovered two additional gene clusters Bn and Np, each encoding a highly homologous terpene synthase to MgMS but distinct tailoring enzymes. Heterologous expression of the terpene synthases BnMS and NpMS yielded the same product as MgMS. Subsequent introduction of three P450 enzymes MgP450, BnP450 and NpP450 from individual gene clusters resulted in four new FC-type diterpenoids 2-5. Notably, MgP450 serves as the first enzyme responsible for hydroxylation of the C19 methyl group, whereas NpP450 functions as a multifunctional P450 enzyme involved in the oxidations at C5, C6, and C19 positions of the 5-8-5 tricyclic skeleton. C5 oxidation of the hydrocarbon skeleton 1 led to broadening of the NMR signals and incomplete spectra, which was resolved by high-temperature NMR spectral analysis.

2.
J Nat Prod ; 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39194958

RESUMEN

ortho-Quinone methides (o-QMs) are a class of highly reactive intermediates that serve as important nonisolable building blocks (NBBs) in organic synthesis and small-molecule library construction. Because of their instability and nonisolability, most reported o-QMs are generated through in situ chemical synthesis, and only a few natural o-QMs have been reported due to the lack of directed discovery strategies. Herein, a new natural o-QM precursor (trichophenol A, 2) was identified from the fungal strain of Trichoderma sp. AT0167 through genome mining, which was generated by trilA (nonreducing polyketide synthase) and trilB (2-oxoglutarate dependent dioxygenase). Combinatorial biosynthesis via two other known NRPKS genes with trilA and trilB was performed, leading to the generation of five new trichophenol o-QM oligomers (trichophenols D-H, 5-9). The strategy combining genome mining with combinatorial biosynthesis not only targetedly uncovered a new natural o-QM precursor but also produced various new molecules through oligomerization of the new o-QM and its designated o-QM acceptors without chemical synthesis and isolation of intermediates, which was named NBB genome mining-combinatorial biosynthesis strategy for o-QM molecule library construction. This study provides a new strategy for the targeted discovery of natural o-QMs and small-molecule library construction with natural o-QMs.

3.
Angew Chem Int Ed Engl ; : e202407895, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38949843

RESUMEN

The diterpene synthase AfAS was identified from Aspergillus fumigatiaffinis. Its amino acid sequence and-according to a structural model-active site architecture are highly similar to those of the fusicocca-2,10(14)-diene synthase PaFS, but AfAS produces a structurally much more complex diterpene with a novel 6-5-5-5 tetracyclic skeleton called asperfumene. The cyclisation mechanism of AfAS was elucidated through isotopic labelling experiments and DFT calculations. The reaction cascade proceeds in its initial steps through similar intermediates as for the PaFS cascade, but then diverges through an unusual vicinal deprotonation-reprotonation process that triggers a skeletal rearrangement at the entrance to the steps leading to the unique asperfumene skeleton. The structural model revealed only one major difference between the active sites: The PaFS residue F65 is substituted by I65 in AfAS. Intriguingly, site-directed mutagenesis experiments with both diterpene synthases revealed that position 65 serves as a bidirectional functional switch for the biosynthesis of tetracyclic asperfumene versus structurally less complex diterpenes.

4.
Opt Express ; 32(12): 21517-21531, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38859504

RESUMEN

In this paper, a dielectric elastomer (DE)-driven liquid prism enabling two-dimensional beam control is proposed. The proposed liquid prism consists of a flexible driver and a liquid cavity. The glass plate is driven by DE to change the tilt angle of the liquid-solid interface for beam steering and field of view (FOV) tuning. The maximum optical deflection angle of 8.13° and response time of 76.77 ms were measured, the variable FOV capability was also verified. The proposed liquid prism can be used in beam modulation, microscope systems.

5.
Nat Commun ; 15(1): 4588, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38816433

RESUMEN

Lycibarbarspermidines are unusual phenolamide glycosides characterized by a dicaffeoylspermidine core with multiple glycosyl substitutions, and serve as a major class of bioactive ingredients in the wolfberry. So far, little is known about the enzymatic basis of the glycosylation of phenolamides including dicaffeoylspermidine. Here, we identify five lycibarbarspermidine glycosyltransferases, LbUGT1-5, which are the first phenolamide-type glycosyltransferases and catalyze regioselective glycosylation of dicaffeoylspermidines to form structurally diverse lycibarbarspermidines in wolfberry. Notably, LbUGT3 acts as a distinctive enzyme that catalyzes a tandem sugar transfer to the ortho-dihydroxy group on the caffeoyl moiety to form the unusual ortho-diglucosylated product, while LbUGT1 accurately discriminates caffeoyl and dihydrocaffeoyl groups to catalyze a site-selective sugar transfer. Crystal structure analysis of the complexes of LbUGT1 and LbUGT3 with UDP, combined with molecular dynamics simulations, revealed the structural basis of the difference in glycosylation selectivity between LbUGT1 and LbUGT3. Site-directed mutagenesis illuminates a conserved tyrosine residue (Y389 in LbUGT1 and Y390 in LbUGT3) in PSPG box that plays a crucial role in regulating the regioselectivity of LbUGT1 and LbUGT3. Our study thus sheds light on the enzymatic underpinnings of the chemical diversity of lycibarbarspermidines in wolfberry, and expands the repertoire of glycosyltransferases in nature.


Asunto(s)
Glicosiltransferasas , Lycium , Glicosiltransferasas/metabolismo , Glicosiltransferasas/química , Glicosiltransferasas/genética , Glicosilación , Lycium/enzimología , Lycium/metabolismo , Lycium/química , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/química , Glicósidos/metabolismo , Glicósidos/química , Cristalografía por Rayos X , Piperidinas/metabolismo , Piperidinas/química , Especificidad por Sustrato
6.
J Am Chem Soc ; 146(18): 12723-12733, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38654452

RESUMEN

Enfumafungin-type antibiotics, represented by enfumafungin and fuscoatroside, belong to a distinct group of triterpenoids derived from fungi. These compounds exhibit significant antifungal properties with ibrexafungerp, a semisynthetic derivative of enfumafungin, recently gaining FDA's approval as the first oral antifungal drug for treating invasive vulvar candidiasis. Enfumafungin-type antibiotics possess a cleaved E-ring with an oxidized carboxyl group and a reduced methyl group at the break site, suggesting unprecedented C-C bond cleavage chemistry involved in their biosynthesis. Here, we show that a 4-gene (fsoA, fsoD, fsoE, fsoF) biosynthetic gene cluster is sufficient to yield fuscoatroside by heterologous expression in Aspergillus oryzae. Notably, FsoA is an unheard-of terpene cyclase-glycosyltransferase fusion enzyme, affording a triterpene glycoside product that relies on enzymatic fusion. FsoE is a P450 enzyme that catalyzes successive oxidation reactions at C19 to facilitate a C-C bond cleavage, producing an oxidized carboxyl group and a reduced methyl group that have never been observed in known P450 enzymes. Our study thus sets the important foundation for the manufacture of enfumafungin-type antibiotics using biosynthetic approaches.


Asunto(s)
Antifúngicos , Antifúngicos/química , Antifúngicos/farmacología , Antifúngicos/metabolismo , Aspergillus oryzae/enzimología , Aspergillus oryzae/metabolismo , Familia de Multigenes , Triterpenos/química , Triterpenos/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo
7.
J Nat Prod ; 87(5): 1338-1346, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38447084

RESUMEN

Oxabornyl polyenes represent a unique group of polyketides characterized by a central polyene core flanked by a conserved oxabornyl moiety and a structurally diverse oxygen heterocyclic ring. They are widely distributed in fungi and possess a variety of biological activities. Due to the significant spatial separation between the two stereogenic ring systems, it is difficult to establish their overall relative configurations. Here, we isolated three oxabornyl polyenes, prugosenes A1-A3 (1-3), from Talaromyces sp. JNU18266-01. Although these compounds were first reported from Penicillium rugulosum, their overall relative and absolute configurations remained unassigned. By employing ozonolysis in combination with ECD calculations, we were able to establish their absolute configurations, and additionally obtained seven new chemical derivatives (4-10). Notably, through NMR data analysis and quantum chemical calculations, we achieved the structural revision of prugosene A2. Furthermore, prugosenes A1-A3 exhibited potent antiviral activity against the respiratory syncytial virus, with compound 1 displaying an IC50 value of 6.3 µM. Our study thus provides a valuable reference for absolute configuration assignment of oxabornyl polyene compounds.


Asunto(s)
Polienos , Polienos/química , Polienos/farmacología , Estructura Molecular , Talaromyces/química , Antivirales/farmacología , Antivirales/química , Virus Sincitiales Respiratorios/efectos de los fármacos , Humanos
8.
Nat Prod Rep ; 41(5): 748-783, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38265076

RESUMEN

Covering: up to August 2023Terpenoids, which are widely distributed in animals, plants, and microorganisms, are a large group of natural products with diverse structures and various biological activities. They have made great contributions to human health as therapeutic agents, such as the anti-cancer drug paclitaxel and anti-malarial agent artemisinin. Accordingly, the biosynthesis of this important class of natural products has been extensively studied, which generally involves two major steps: hydrocarbon skeleton construction by terpenoid cyclases and skeleton modification by tailoring enzymes. Additionally, fungi (Ascomycota and Basidiomycota) serve as an important source for the discovery of terpenoids. With the rapid development of sequencing technology and bioinformatics approaches, genome mining has emerged as one of the most effective strategies to discover novel terpenoids from fungi. To date, numerous terpenoid cyclases, including typical class I and class II terpenoid cyclases as well as emerging UbiA-type terpenoid cyclases, have been identified, together with a variety of tailoring enzymes, including cytochrome P450 enzymes, flavin-dependent monooxygenases, and acyltransferases. In this review, our aim is to comprehensively present all fungal terpenoid cyclases identified up to August 2023, with a focus on newly discovered terpenoid cyclases, especially the emerging UbiA-type terpenoid cyclases, and their related tailoring enzymes from 2015 to August 2023.


Asunto(s)
Hongos , Terpenos , Terpenos/metabolismo , Terpenos/química , Hongos/metabolismo , Hongos/química , Estructura Molecular , Productos Biológicos/metabolismo , Productos Biológicos/química , Sistema Enzimático del Citocromo P-450/metabolismo
9.
Org Biomol Chem ; 21(35): 7141-7150, 2023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37608696

RESUMEN

Bisabosqual-type meroterpenoids are fungi-derived polyketide-terpenoid hybrids bearing a 2,3,3a,3a1,9,9a-hexahydro-1H-benzofuro[4,3,2-cde]chromene skeleton (6/6/6/5 ring system) or its seco-C-ring structure, and exhibit diverse bioactivities. Their unique structural architecture and impressive biological activities have led to considerable interest in discovering new analogues. However, to date, only nine analogues have been identified. Herein, we reported the isolation and identification of six new bisabosqual-type meroterpenoids stachybisbins C-H (1-6), together with one known compound bisabosqual C (7), from Stachybotrys bisbyi PYH05-7. Intriguingly, we found that 7, which contains the intact tetracyclic skeleton, can be non-enzymatically converted into its seco derivative stachybisbin I (8), unveiling the biosynthetic relationship between bisabosquals and seco-bisabosquals. Moreover, based on CRISPR/Cas9-mediated gene disruption, we revealed that the three-gene cluster responsible for the formation of LL-Z1272ß is associated with the biosynthesis of bisabosqual-type meroterpenoids, and then proposed a plausible route to 1-8.


Asunto(s)
Benzopiranos , Policétidos , Radiofármacos , Terpenos
10.
Org Biomol Chem ; 21(20): 4309-4318, 2023 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-37171256

RESUMEN

In fungi, there is a rare group of natural products harboring the 2,3,3a,9a-tetrahydro-4H-furo[2,3-b]chromene skeleton, represented by xyloketal B, which display a wide range of biological activities and have drawn significant attention. In this work, four new analogues simpliketals A-D (1-4), as well as two other new compounds simplilactones A and B (5 and 6), were isolated from Simplicillium sp. AHK071-01. Their structures were elucidated by extensive NMR spectroscopic methods, 13C NMR calculation, single-crystal X-ray diffraction, and ECD calculation. In addition, five known compounds (7-11) including alboatrin (7) were also obtained. Based on the structural similarity of the above compounds, we inferred that compounds 5, 6, and 8-11 might be biosynthetically related with 1-4 and 7, which allowed us to propose an alternative biosynthetic route to generate the furan-fused chromene skeleton of this class of compounds, instead of a previously presumed polyketide-terpenoid hybrid pathway. Finally, cytotoxicity assays showed that 1-4 exhibited weak inhibitory activity on PANC-1 cells and that 2 and 3 possessed moderate activity against SH-SY5Y cells.


Asunto(s)
Hypocreales , Neuroblastoma , Humanos , Benzopiranos/química , Estructura Molecular , Furanos
11.
Org Biomol Chem ; 21(4): 851-857, 2023 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-36602159

RESUMEN

Fernane-type triterpenoids are a small group of natural products mainly found in plants and fungi with a wide range of biological activities. Polytolypin is a representative fernane-type triterpenoid from fungi and possesses potent antifungal activity. So far, biosynthesis of fungal-derived fernane-type triterpenoids has not been characterized, which hinders the expansion of their structural diversity using biosynthetic approaches. Herein, we identified the biosynthetic gene cluster of polytolypin and elucidated its biosynthetic pathway through heterologous expression in Aspergillus oryzae NSAR1, which involves a new triterpene cyclase for the biosynthesis of the hydrocarbon skeleton motiol, followed by multiple oxidations via three P450 enzymes. Moreover, two new triterpene cyclases for the biosynthesis of two other fernane-type skeletons isomotiol and fernenol were identified from fungi, and were individually co-expressed with the three P450 enzymes involved in polytolypin biosynthesis. These studies led to the generation of 13 fernane-type triterpenoids including eight new compounds, and two of them showed stronger antifungal activity towards Candida albicans FIM709 than polytolypin.


Asunto(s)
Antifúngicos , Triterpenos , Antifúngicos/farmacología , Triterpenos/farmacología , Triterpenos/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Triterpenos Pentacíclicos , Vías Biosintéticas/genética
12.
Beilstein J Org Chem ; 18: 1396-1402, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36262672

RESUMEN

Fusicoccane-type terpenoids are a subgroup of diterpenoids featured with a unique 5-8-5 ring system. They are widely distributed in nature and possess a variety of biological activities. Up to date, only five fusicoccane-type diterpene synthases have been identified. Here, we identify a two-gene biosynthetic gene cluster containing a new fusicoccane-type diterpene synthase gene tadA and an associated cytochrome P450 gene tadB from Talaromyces wortmannii ATCC 26942. Heterologous expression reveals that TadA catalyzes the formation of a new fusicoccane-type diterpene talaro-7,13-diene. D2O isotope labeling combined with site-directed mutagenesis indicates that TadA might employ a different C2,6 cyclization strategy from the known fusicoccane-type diterpene synthases, in which a neutral intermediate is firstly formed and then protonated by an environmental proton. In addition, we demonstrate that the associated cytochrome P450 enzyme TadB is able to catalyze multiple oxidation of talaro-7,13-diene to yield talaro-6,13-dien-5,8-dione.

13.
IEEE Trans Neural Netw Learn Syst ; 33(12): 7079-7090, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34111002

RESUMEN

Network representation learning (NRL) has far-reaching effects on data mining research, showing its importance in many real-world applications. NRL, also known as network embedding, aims at preserving graph structures in a low-dimensional space. These learned representations can be used for subsequent machine learning tasks, such as vertex classification, link prediction, and data visualization. Recently, graph convolutional network (GCN)-based models, e.g., GraphSAGE, have drawn a lot of attention for their success in inductive NRL. When conducting unsupervised learning on large-scale graphs, some of these models employ negative sampling (NS) for optimization, which encourages a target vertex to be close to its neighbors while being far from its negative samples. However, NS draws negative vertices through a random pattern or based on the degrees of vertices. Thus, the generated samples could be either highly relevant or completely unrelated to the target vertex. Moreover, as the training goes, the gradient of NS objective calculated with the inner product of the unrelated negative samples and the target vertex may become zero, which will lead to learning inferior representations. To address these problems, we propose an adversarial training method tailored for unsupervised inductive NRL on large networks. For efficiently keeping track of high-quality negative samples, we design a caching scheme with sampling and updating strategies that has a wide exploration of vertex proximity while considering training costs. Besides, the proposed method is adaptive to various existing GCN-based models without significantly complicating their optimization process. Extensive experiments show that our proposed method can achieve better performance compared with the state-of-the-art models.

14.
RSC Chem Biol ; 2(1): 166-180, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34458779

RESUMEN

Alkyne-containing natural products are important molecules that are widely distributed in microbes and plants. Inspired by the advantages of acetylenic products used in the fields of medicinal chemistry, organic synthesis and material science, great efforts have focused on discovering the biosynthetic enzymes and pathways for alkyne formation. Here, we summarize the biosyntheses of alkyne-containing natural products and introduce de novo biosynthetic strategies for alkyne-tagged compound production.

15.
Acta Pharm Sin B ; 11(6): 1676-1685, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34221876

RESUMEN

Fusidane-type antibiotics, represented by helvolic acid, fusidic acid and cephalosporin P1, are fungi-derived antimicrobials with little cross-resistance to commonly used antibiotics. Generation of new fusidane-type derivatives is therefore of great value, but this is hindered by available approaches. Here, we developed a stochastic combinational strategy by random assembly of all the post-tailoring genes derived from helvolic acid, fusidic acid, and cephalosporin P1 biosynthetic pathways in a strain that produces their common intermediate. Among a total of 27 gene combinations, 24 combinations produce expected products and afford 58 fusidane-type analogues, of which 54 are new compounds. Moreover, random gene combination can induce unexpected activity of some post-tailoring enzymes, leading to a further increase in chemical diversity. These newly generated derivatives provide new insights into the structure‒activity relationship of fusidane-type antibiotics. The stochastic combinational strategy established in this study proves to be a powerful approach for expanding structural diversity of natural products.

16.
Angew Chem Int Ed Engl ; 59(32): 13531-13536, 2020 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-32364293

RESUMEN

The alkyne is a biologically significant moiety found in many natural products and a versatile functional group widely used in modern chemistry. Recent studies have revealed the biosynthesis of acetylenic bonds in fatty acids and amino acids. However, the molecular basis for the alkynyl moiety in acetylenic prenyl chains occurring in a number of meroterpenoids remains obscure. Here, we identify the biosynthetic gene cluster and characterize the biosynthetic pathway of an acetylenic meroterpenoid biscognienyne B based on heterologous expression, feeding experiments, and in vitro assay. This work shows that the alkyne moiety is constructed by an unprecedented cytochrome P450 enzyme BisI, which shows promiscuous activity towards C5 and C15 prenyl chains. This finding provides an opportunity for discovery of new compounds, featuring acetylenic prenyl chains, through genome mining, and it also expands the enzyme inventory for de novo biosynthesis of alkynes.


Asunto(s)
Alquinos/metabolismo , Ascomicetos/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Proteínas Fúngicas/metabolismo , Hemiterpenos/biosíntesis , Ascomicetos/enzimología , Ascomicetos/genética , Sistema Enzimático del Citocromo P-450/química , Sistema Enzimático del Citocromo P-450/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Familia de Multigenes , Oxidación-Reducción , Especificidad por Sustrato
17.
ACS Chem Biol ; 15(1): 44-51, 2020 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-31860257

RESUMEN

Fusidane-type antibiotics are a group of triterpenoid antibiotics. They include helvolic acid, fusidic acid, and cephalosporin P1, among which fusidic acid has been used clinically. We have recently elucidated the biosynthesis of helvolic acid and fusidic acid, which share an early biosynthetic route involving six conserved enzymes. Here, we report two separate gene clusters for cephalosporin P1 biosynthesis. One consists of the six conserved genes, and the other contains three genes encoding a P450 enzyme (CepB4), an acetyltransferase (CepD2), and a short-chain dehydrogenase/reductase (CepC2). Introduction of these three genes into Aspergillus oryzae, which harbors the six conserved genes, produced cephalosporin P1. Stepwise introduction revealed that CepB4 not only catalyzes stereoselective dual oxidation of C6 and C7, but also monooxygenation of C6 or C7. This led to the generation of five new analogues. Using monohydroxylated products as substrates, we demonstrated that CepD2 specifically acetylates C6-OH, although both C6-OH and C7-OH acetylated analogues have been identified in nature.


Asunto(s)
Cefalosporinas/biosíntesis , Sistema Enzimático del Citocromo P-450/metabolismo , Enzimas Multifuncionales/metabolismo , Acetilación , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Aspergillus oryzae/genética , Secuencia de Bases , Carbonil Reductasa (NADPH)/genética , Carbonil Reductasa (NADPH)/metabolismo , Dominio Catalítico , Clonación Molecular , Sistema Enzimático del Citocromo P-450/genética , Ácido Fusídico/análogos & derivados , Ácido Fusídico/química , Regulación de la Expresión Génica , Hidroxilación , Estructura Molecular , Enzimas Multifuncionales/genética , Oxidación-Reducción
18.
IEEE Trans Pattern Anal Mach Intell ; 42(5): 1243-1256, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-30668464

RESUMEN

Internet platforms provide new ways for people to share experiences, generating massive amounts of data related to various real-world concepts. In this paper, we present an event detection framework to discover real-world events from multiple data domains, including online news media and social media. As multi-domain data possess multiple data views that are heterogeneous, initial dictionaries consisting of labeled data samples are exploited to align the multi-view data. Furthermore, a shared multi-view data representation (SMDR) model is devised, which learns underlying and intrinsic structures shared among the data views by considering the structures underlying the data, data variations, and informativeness of dictionaries. SMDR incorpvarious constraints in the objective function, including shared representation, low-rank, local invariance, reconstruction error, and dictionary independence constraints. Given the data representations achieved by SMDR, class-wise residual models are designed to discover the events underlying the data based on the reconstruction residuals. Extensive experiments conducted on two real-world event detection datasets, i.e., Multi-domain and Multi-modality Event Detection dataset, and MediaEval Social Event Detection 2014 dataset, indicating the effectiveness of the proposed approaches.

19.
Acta Pharm Sin B ; 9(2): 433-442, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30972287

RESUMEN

Fusidic acid is the only fusidane-type antibiotic that has been clinically used. However, biosynthesis of this important molecule in fungi is poorly understood. We have recently elucidated the biosynthesis of fusidane-type antibiotic helvolic acid, which provides us with clues to identify a possible gene cluster for fusidic acid (fus cluster). This gene cluster consists of eight genes, among which six are conserved in the helvolic acid gene cluster except fusC1 and fusB1. Introduction of the two genes into the Aspergillus oryzae NSAR1 expressing the conserved six genes led to the production of fusidic acid. A stepwise introduction of fusC1 and fusB1 revealed that the two genes worked independently without a strict reaction order. Notably, we identified two short-chain dehydrogenase/reductase genes fusC1 and fusC2 in the fus cluster, which showed converse stereoselectivity in 3-ketoreduction. This is the first report on the biosynthesis and heterologous expression of fusidic acid.

20.
Org Biomol Chem ; 17(2): 248-251, 2019 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-30548032

RESUMEN

A putative three-gene cluster for asperterpenoid A was identified. Step-wise reconstitution of this gene cluster in Aspergillus oryzae reveals that astC encodes a sesterterpene cyclase to synthesize preasperterpenoid A, which is dually oxidized by a P450 enzyme AstB to give asperterpenoid A along with a minor product asperterpenoid B, and asperterpenoid A is further oxidized by another P450 eznyme AstA to afford a new sesterterpenoid asperterpenoid C. Unexpectedly, asperterpenoids A and B, but not the final product asperterpenoid C, exhibit potent inhibitory activity against Mycobacterium tuberculosis protein tyrosine phosphatase B with IC50 values of 3-6 µM.


Asunto(s)
Antituberculosos/metabolismo , Antituberculosos/farmacología , Aspergillus oryzae/metabolismo , Mycobacterium tuberculosis/enzimología , Proteínas Tirosina Fosfatasas/antagonistas & inhibidores , Sesquiterpenos/metabolismo , Sesquiterpenos/farmacología , Aspergillus oryzae/enzimología , Aspergillus oryzae/genética , Vías Biosintéticas , Sistema Enzimático del Citocromo P-450/metabolismo , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Humanos , Liasas/metabolismo , Familia de Multigenes , Mycobacterium tuberculosis/efectos de los fármacos , Tuberculosis/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA