Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 15(14): 17978-17985, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-36975718

RESUMEN

Solid-state polymer electrolytes (SPEs) are considered as one of the most promising candidates for the next-generation lithium metal batteries (LMBs). However, the large thickness and severe interfacial side reactions with electrodes seriously restrict the application of SPEs. Herein, we developed an ultrathin and robust poly(vinylidene fluoride) (PVDF)-based composite polymer electrolyte (PPSE) by introducing polyethylene (PE) separators and SiO2 nanoparticles with rich silicon hydroxyl (Si-OH) groups (nano-SiO2). The thickness of the PPSE is only 20 µm but possesses a quite high mechanical strength of 64 MPa. The introduction of nano-SiO2 fillers can tightly anchor the essential N,N-dimethylformamide (DMF) to reinforce the ion-transport ability of PVDF and suppress the side reactions of DMF with Li metal, which can significantly enhance the electrochemical stability of the PPSE. Meanwhile, the Si-OH groups on the surface of nano-SiO2 as a Lewis acid promote the dissociation of the lithium bis(fluorosulfonyl)imide (LiFSI) and immobilize the FSI- anions, achieving a high lithium transference number (0.59) and an ideal ionic conductivity (4.81 × 10-4 S cm-1) for the PPSE. The assembled Li/PPSE/Li battery can stably cycle for a record of 11,000 h, and the LiNi0.8Co0.1Mn0.1O2/PPSE/Li battery presents an initial specific capacity of 173.3 mA h g-1 at 0.5 C, which can stably cycle 300 times. This work provides a new strategy for designing composite solid-state electrolytes with high mechanical strength and ionic conductivity by modulating their framework.

2.
Sci Bull (Beijing) ; 64(21): 1617-1624, 2019 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36659574

RESUMEN

Carbon nanofibers (CNFs) with excellent electric conductivity and high surface area have attracted immense research interests in supercapacitors. However, the macroscopic production of CNFs still remains a great challenge. Herein, ultrafine N-doped CNFs (N-CNFs) with a diameter of ∼20 nm are synthesized through a simple and scalable sol-gel method based on the self-assembly of phenolic resin and cetyltrimethylammonium bromide. When employed in aqueous supercapacitors, the obtained activated N-CNFs manifest a high gravimetric/areal capacitance (380 F g-1/1.7 F cm-2) as well as outstanding rate capability and cycling stability. Besides, the activated N-CNFs also demonstrate excellent capacitive performance (330 F g-1) in flexible quasi-solid-state supercapacitors. The remarkable electrochemical performance as well as the easy and scalable synthesis makes the N-CNFs a highly promising electrode material for supercapacitors.

3.
Nanoscale ; 10(46): 21604-21616, 2018 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-30457149

RESUMEN

The last decade has witnessed significant breakthroughs in the synthesis of porous carbon spheres (PCSs). This Review provides an updated summarization on the controlled synthesis of PCSs for supercapacitors. The synthetic methodologies can be generally categorized into (i) hard templating, (ii) soft templating, (iii) the modified Stöber method, (iv) hydrothermal carbonization (HTC), and (v) aerosol-assisted methods. The obtained PCSs include microporous/mesoporous/macroporous carbon spheres, single-/multi-shelled hollow carbon spheres, and yolk@shell carbon spheres. The structure-electrochemical performance correlation is discussed. Finally, the future research directions on the rational design of PCSs for supercapacitors are predicted.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...