Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Pollut ; 319: 120987, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36592883

RESUMEN

The contamination of the aquatic environment with microplastics has become a global environmental concern. Microplastic particles can be shredded to form smaller nanoplastics, and knowledge on their impacts on phytoplankton, especially freshwater microalgae, is still limited. To investigate this issue, the microalga Scenedesmus quadricauda was exposed to polystyrene nanoplastics (PS-NPs) of five concentrations (10, 25, 50, 100, and 200 mg/L). The growth; the contents of antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD); the chlorophyll content; and concentrations of soluble protein and soluble polysaccharide were accordingly measured. The results showed that the microalgal density increased with the increase of the polystyrene nanoplastic concentrations, and the physiological features of alga were enhanced after the stimulation of nanoplastics. Furthermore, a high concentration (200 mg/L) of nanoplastics increased the contents of chlorophyll, soluble protein, and polysaccharide (P < 0.05). The antioxidant enzyme activities of Scenedesmus quadricauda were significantly activated by nanoplastics. Lastly, we propose three possible algal recovery mechanisms in response to nanoplastics in which Scenedesmus quadricauda was tolerant with PS-NPs by cell wall thickening, internalization, and aggregation. The results of this study contribute to understanding of the ecological risks of nanoplastics on freshwater microalgae.


Asunto(s)
Microalgas , Scenedesmus , Contaminantes Químicos del Agua , Poliestirenos/química , Antioxidantes/metabolismo , Microplásticos/toxicidad , Microplásticos/metabolismo , Plásticos/metabolismo , Microalgas/metabolismo , Clorofila/metabolismo , Scenedesmus/metabolismo , Contaminantes Químicos del Agua/metabolismo
2.
Genomics ; 112(6): 3978-3990, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32650096

RESUMEN

Thorea hispida exclusively inhabits freshwater environments and is characterized by a triphasic life history. In this study, the organelle genomes and transcriptomes of different life history stages of T. hispida were examined using next generation sequencing. The chloroplast and mitochondrial genomes of the chantransia stage were 175,747 and 25,411 bp in length, respectively. The chantransia stage was highly similar to the gametophyte stage based on comparisons of organelle genomes and phylogenetic reconstruction. Transcriptomic comparisons of two stages found that ribosome-related genes were the most up-regulated in the gametophyte stage of T. hispida. Seven meiosis-specific genes, including SPO11 initiator of meiotic double-stranded breaks(spo11), meiotic nuclear divisions 1(mnd1), RAD51 recombinase(rad51), mutS homolog 4(msh4), mutS homolog 5(msh5), REC8 meiotic recombination protein(rec8), and DNA helicase Mer3(mer3), were differentially regulated between the two life history stages. The organelle genomes and transcriptomes from T. hispida provided in this study will be valuable for future studies of freshwater red algae.


Asunto(s)
Agua Dulce , Rhodophyta/fisiología , Transcriptoma , Filogenia , Reacción en Cadena en Tiempo Real de la Polimerasa , Rhodophyta/genética
3.
Ecotoxicol Environ Saf ; 171: 274-280, 2019 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-30612015

RESUMEN

There is a concern about the increasing prevalence of health problems related to the ingestion of fluoride (F-) in the developing world. Drinking water is one important source of F-, and the concentration of F- needs to be known to ensure the safety of drinking water. In this study, F- levels in drinking water were investigated across Taiyuan in Shanxi Province, China. Spatial-temporal distribution characteristics and potential associated health risks were analyzed using GIS. We collected 485 samples from shallow wells without any defluoridation treatments between 2008 and 2016. After analyzing the samples of F- content we found that mean F- levels of urban areas (0.61 ±â€¯0.39 mg L-1), suburban areas (0.70 ±â€¯0.87 mg L-1) and for all of Taiyuan city (0.63 ±â€¯0.56 mg L-1) were in optimum range based on the recommendation by USEPA. However, individual locations within industrial areas (e.g. Gujiao District) had higher F- levels (1.06 mg L-1). A concerning result showed that 12.37% of tested locations had F- concentrations larger than 1.0 mg L-1. We calculated F- Health Risk Indices (HRIsF) and found that highest were associated with suburban areas, especially in the year 2009 and 2010. However, from 2008 to 2016, overall F- levels and HRIsF of the sampled groundwater in Taiyuan City showed a decreasing trend. HRIsF in suburban areas was higher than urban areas, possible due to the heavily prevalent coal mining industry in those areas. Specific policies should be formulated to address HRIsF.


Asunto(s)
Agua Potable/química , Fluoruros/análisis , Agua Subterránea/química , Contaminantes Químicos del Agua/análisis , China/epidemiología , Monitoreo del Ambiente , Sistemas de Información Geográfica , Humanos , Medición de Riesgo , Análisis Espacio-Temporal , Salud Suburbana , Salud Urbana
4.
Molecules ; 23(12)2018 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-30486347

RESUMEN

In this study, a non-targeted metabolic profiling method based on ultra-performance liquid chromatography-high resolution mass spectrometry (UPLC-HRMS) was used to characterize the plasma metabolic profile associated with the protective effects of the Sagittaria sagittifolia polysaccharide (SSP) on isoniazid (INH)-and rifampicin (RFP)-induced hepatotoxicity in mice. Fourteen potential biomarkers were identified from the plasma of SSP-treated mice. The protective effects of SSP on hepatotoxicity caused by the combination of INH and RFP (INH/RFP) were further elucidated by investigating the related metabolic pathways. INH/RFP was found to disrupt fatty acid metabolism, the tricarboxylic acid cycle, amino acid metabolism, taurine metabolism, and the ornithine cycle. The results of the metabolomics study showed that SSP provided protective effects against INH/RFP-induced liver injury by partially regulating perturbed metabolic pathways.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Isoniazida/efectos adversos , Metaboloma/efectos de los fármacos , Polisacáridos/farmacología , Rifampin/efectos adversos , Sagittaria/química , Animales , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Isoniazida/farmacología , Metabolómica , Ratones , Ratones Endogámicos BALB C , Polisacáridos/química , Rifampin/farmacología
5.
Environ Sci Pollut Res Int ; 25(24): 23917-23928, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29881967

RESUMEN

The ability of the agricultural residue of Phragmites australis to serve as an absorbent material used to remove phenol from aqueous solutions in batch and continuous fixed-bed columns was investigated. Prepared adsorbents were characterized by SEM, FTIR, and pHpzc methods. The equilibrium adsorption (qe) of phenol was increased from 9.61 to 29.40 mg/g when the initial phenol concentrations increased from 50 to 150 mg/L. The max adsorption capacity of Phragmites australis was found to be 29.60 mg/g at 30 °C. In column studies, a higher flow rate, higher initial concentration of phenol, and shorter packing layer height increase the column adsorption capacity of phenol. In a batch and continuous fixed-bed column studies, the experiment data was evaluated by some classic models. Fitting degree between the experimental results shows that the pseudo-second-order adsorption kinetics and Langmuir model were the best. Thomas and Yoon-Nelson models were in good agreement with the experimental breakthrough curve data. Both batch and continuous investigation indicated that Phragmites australis could be used as a fine adsorbent to remove phenol and that the adsorption efficiency improved significantly in the column experiment.


Asunto(s)
Fenol/aislamiento & purificación , Poaceae/química , Contaminantes Químicos del Agua/aislamiento & purificación , Purificación del Agua/métodos , Adsorción , Cinética , Modelos Teóricos , Fenol/química , Soluciones/química , Contaminantes Químicos del Agua/química , Purificación del Agua/instrumentación
6.
Ecotoxicol Environ Saf ; 134P1: 273-279, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27643987

RESUMEN

Severe eutrophication and harmful cyanobacterial blooms of freshwater ecosystems is a persistent environmental topic in recent decades. Pyrogallol (polyphenol) was confirmed to exhibit one of the most intensive inhibitory effects on the Microcystis aeruginosa. In this study, the expression of genes, release of microcystins (MCs) and antioxidant system of pyrogallol on Microcystis aeruginosa TY001 were investigated. The results revealed that the expression of stress response genes (prx, ftsH, grpE and fabZ) and DNA repair genes (recA and gyrB) were up-regulated. Meanwhile, the antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) activity, were increased, and the stress caused lipid peroxidation to occur and malondialdehyde (MDA) levels to change. Unexpectedly, the relative transcript abundance of microcystin synthesis genes (mcyB, mcyD and ntcA) and the contents of microcystins (MCs) significantly increased compared with the control in the culture medium. In conclusion, oxidative damage and DNA damage are the primary mechanisms for the allelopathic effect of pyrogallol on M. aeruginosa TY001.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...