Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Anim Sci ; 1022024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-39158360

RESUMEN

Protein kinase A (PKA) plays an important role in cellular life activities. Recently, PKA was found to bind to the inhibitor of nuclear factor-kappaB (IκB), a key protein in the nuclear factor-kappaB (NF-κB) pathway, to form a complex involved in the regulation of inflammatory response. However, the role of PKA in the anti-inflammatory of goose fatty liver is still unclear. A total of 14 healthy 70-d-old male Lander geese were randomly divided into a control group and an overfeeding group. Inflammation level was analyzed by histopathological method in the liver. The mRNA and protein abundance of PKA and tumor necrosis factor-alpha (TNFα), as well as the ubiquitination level of PKA, were detected. Moreover, goose primary hepatocytes were cotreated with glucose, harringtonine, and carbobenzoxy-l-leucyl-l-leucyl-l-leucinal (MG132). Finally, the co-immunoprecipitated samples of PKA from the control and overfeeding group were used for protein mass spectrometry. The results showed that no difference in PKA mRNA expression was observed (P > 0.05), while the PKA protein level in the overfed group was significantly reduced (P < 0.05) when compared with the control group. The ubiquitination level of PKA was higher than that of the control group in fatty liver. The mRNA expression of PKA was elevated but protein abundance was reduced in goose primary hepatocytes with 200 mmol/L glucose treatment (P < 0.05). The PKA protein abundance was dramatically reduced in hepatocytes treated with harringtonine (P < 0.01) when compared with the glucose-supplemented group. Nevertheless, MG132 tended to alleviate the inhibitory effect of harringtonine on PKA protein abundance (P = 0.081). There was no significant difference in TNFα protein level among glucose-treated groups and control (P > 0.05). Protein mass spectrometry analysis showed that 29 and 76 interacting proteins of PKA were screened in goose normal and fatty liver, respectively. Validation showed that PKA interacted with the E3 ubiquitination ligases ring finger protein 135 (RNF135) and potassium channel modulatory factor 1 (KCMF1). In summary, glucose may inhibit the inflammatory response in goose fatty liver by increasing the ubiquitination level of PKA. Additionally, RNF135 and KCMF1 may be involved in the regulation of PKA ubiquitination level as E3 ubiquitination ligases.


No obvious pathological symptoms such as inflammation were observed in fatty goose liver, suggesting that there is a unique mechanism to inhibit the development of inflammation during the goose fatty liver formation. Previous studies have shown that high glucose activated the ubiquitin­proteasome. Protein kinase A (PKA) can interact with a key protein in the nuclear factor-kappaB pathway to activate the pathway and trigger inflammatory response. To further understand how inflammation is suppressed during goose fatty liver formation. The present study showed that inflammation and PKA protein level were reduced in goose fatty liver. Meanwhile, PKA can be modified by ubiquitination in goose liver and hepatocytes. The result of the study implied that glucose deposited during goose fatty liver formation may reduce the PKA protein content by increasing the PKA ubiquitination level, thereby inhibiting the inflammatory response. Our study not only contributes to elucidate the new mechanism for suppressed inflammation in goose fatty liver but also provides a reference for the study of fatty liver in other animals.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico , Hígado Graso , Gansos , Glucosa , Ubiquitinación , Animales , Masculino , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Ubiquitinación/efectos de los fármacos , Glucosa/metabolismo , Hígado Graso/veterinaria , Hígado Graso/metabolismo , Inflamación/veterinaria , Enfermedades de las Aves de Corral , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/genética , Hígado/efectos de los fármacos , Hígado/metabolismo
2.
Int J Mol Sci ; 24(10)2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37240242

RESUMEN

The sex chromosomes of birds are designated Z and W. The male is homogamous (ZZ), and the female is heterogamous (ZW). The chicken W chromosome is a degenerate version of the Z chromosome and harbors only 28 protein-coding genes. We studied the expression pattern of the W chromosome gene MIER3 (showing differential expression during gonadogenesis) in chicken embryonic gonads and its potential role in gonadal development. The W copy of MIER3 (MIER3-W) shows a gonad-biased expression in chicken embryonic tissues which was different from its Z copy. The overall expression of MIER3-W and MIER3-Z mRNA and protein is correlated with the gonadal phenotype being higher in female gonads than in male gonads or female-to-male sex-reversed gonads. Chicken MIER3 protein is highly expressed in the nucleus, with relatively lower expression in the cytoplasm. Overexpression of MIER3-W in male gonad cells suggested its effect on the GnRH signaling pathway, cell proliferation, and cell apoptosis. MIER3 expression is associated with the gonadal phenotype. MIER3 may promote female gonadal development by regulating EGR1 and αGSU genes. These findings enrich our knowledge of chicken W chromosome genes and support a more systematic and in-depth understanding of gonadal development in chickens.


Asunto(s)
Pollos , Procesos de Determinación del Sexo , Embrión de Pollo , Femenino , Animales , Masculino , Pollos/genética , Procesos de Determinación del Sexo/genética , Regulación del Desarrollo de la Expresión Génica , Gónadas/metabolismo , Cromosomas Sexuales/genética
3.
J Food Sci ; 86(10): 4511-4521, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34535907

RESUMEN

Intramuscular fat (IMF) is an important factor affecting meat quality, but lipid and metabolic profiles of donkey meat remain unclear. The present study was conducted to investigate lipid characteristics in different parts of Dezhou donkey using lipidomics. The results show that IMF was more abundant in longissimus dorsi muscle (LDM) than rump muscle (RM) and hamstring muscle (HM), and mainly composed of triglycerides (TGs) rich in saturated fatty acid (SFAs) and monounsaturated fatty acid (MUFAs). A total of 1143 lipids belonging to 14 subclasses were identified in donkey meat, of which 73 lipids (23 upregulated and 50 downregulated) including glycerolipids (GLs), glycerophospholipids (GPs) and sphingolipids (SPs) were significantly different and are therefore potential biomarkers in LDM versus RM versus HM analyses (variable importance in projection >1, p < 0.05). Notably, 21 TGs upregulated in LDM were rich in MUFAs at sn-1 and SFAs at 2 and 3 positions of TG. Donkey muscle accumulated far more SFAs at the sn-3 position of TG, while more SFAs were present at the sn-1 positions of phosphatidylcholine (PC) and phosphatidylethanolamine (PE), and the percentages of SFAs at the three positions in TG, PC, and PE in the LDM group were much higher. The abundance of MUFAs at the sn-2 positions of TG, PC, and PE was significantly greater than in sn-1 or 3 positions, and the percentages of 18:1n-9 at the sn-1 and 2 position of TGs in LDM were significantly higher than in RM and HM groups. Polyunsaturated fatty acids (e.g.,18:2n-6, 18:3n-3, and 20:4n-6) tended to occur at the sn-1 position in TG, but at the sn-2 position in PC and PE. Significantly differential lipids were mainly enriched in GP, GL, and SP pathways, all considered key pathways for regulating IMF. The results reveal the components, structures and metabolic pathways of lipid molecules in donkey meat, and provide novel insight into the development of donkey meat products and accurate regulation of IMF. PRACTICAL APPLICATION: Intramuscular fat (IMF) is an important factor affecting meat quality, which is directly related to meat flavor, juiciness, and tenderness, but lipid and metabolic profiles of IMF remain unclear. The current results provide basic information for the development of donkey meat products, and broaden our understanding of the regulation of IMF.


Asunto(s)
Equidae , Análisis de los Alimentos , Lipidómica , Lípidos , Carne , Animales , Cromatografía Liquida , Análisis de los Alimentos/métodos , Lípidos/química , Carne/análisis , Músculo Esquelético/química , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA