Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 2038, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38448448

RESUMEN

Hypertrophic scar (HS) considerably affects the appearance and causes tissue dysfunction in patients. The low bioavailability of 5-fluorouracil poses a challenge for HS treatment. Here we show a separating microneedle (MN) consisting of photo-crosslinked GelMA and 5-FuA-Pep-MA prodrug in response to high reactive oxygen species (ROS) levels and overexpression of matrix metalloproteinases (MMPs) in the HS pathological microenvironment. In vivo experiments in female mice demonstrate that the retention of MN tips in the tissue provides a slowly sustained drug release manner. Importantly, drug-loaded MNs could remodel the pathological microenvironment of female rabbit ear HS tissues by ROS scavenging and MMPs consumption. Bulk and single cell RNA sequencing analyses confirm that drug-loaded MNs could reverse skin fibrosis through down-regulation of BCL-2-associated death promoter (BAD), insulin-like growth factor 1 receptor (IGF1R) pathways, simultaneously regulate inflammatory response and keratinocyte differentiation via up-regulation of toll-like receptors (TOLL), interleukin-1 receptor (IL1R) and keratinocyte pathways, and promote the interactions between fibroblasts and keratinocytes via ligand-receptor pair of proteoglycans 2 (HSPG2)-dystroglycan 1(DAG1). This study reveals the potential therapeutic mechanism of drug-loaded MNs in HS treatment and presents a broad prospect for clinical application.


Asunto(s)
Cicatriz Hipertrófica , Humanos , Animales , Femenino , Ratones , Conejos , Cicatriz Hipertrófica/tratamiento farmacológico , Especies Reactivas de Oxígeno , Disponibilidad Biológica , Diferenciación Celular , Metaloproteinasas de la Matriz
2.
Small ; 18(48): e2204759, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36285744

RESUMEN

In order to artificially regulate cell behaviors, intracellular polymerization as an emerging chemical technique has attracted much attention. Yet, it is still a challenge to achieve effective intracellular polymerization to conquer tumors in the complex cellular environment. Herein, this work develops a tumor-targeting and caspase-3 responsive nanoparticle composed of a diacetylene-containing lipidated peptide amphiphile and mitochondria-targeting photosensitizer (C3), which undergoes nanoparticle-to-nanofiber transformation and efficient in situ polymerization triggered by photodynamic treatment and activation of caspase-3. The locational nanofibers on the mitochondria membranes lead to mitochondrial reactive oxygen species (mtROS) burst and self-amplified circulation, offering persistent high oxidative stress to induce cell apoptosis. This study provides a strategy for greatly enhanced antitumor therapeutic efficacy through mtROS burst and self-amplified circulation induced by intracellular transformation and in situ polymerization.


Asunto(s)
Fotoquimioterapia , Fármacos Fotosensibilizantes , Caspasa 3 , Polimerizacion , Línea Celular Tumoral , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo , Péptidos
3.
ACS Macro Lett ; 11(2): 223-229, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35574773

RESUMEN

Precise control of diacetylene-containing peptide amphiphile (DPA) based supramolecular architectures is important for their in cellulo polymerization behaviors and biomedical applications. Herein, we reported two DPAs (cationic PA-NH2 and zwitterionic PA-OH) with a similar molecular structure, which exhibited completely opposite polymerization behaviors in aqueous solution and living cells. Specifically, PA-NH2 was unpolymerizable in aqueous solution but underwent in cellulo polymerization to respond to the intracellular microenvironment. On the contrary, zwitterionic PA-OH was polymerized in solution, rather than inside living cells. Based on the results of cell viability and total internal reflection fluorescent microscopy measurement, PA-OH exhibited higher affinity with cell membranes and lower cytotoxicity than those of PA-NH2. Therefore, it is suggested that the in cellulo polymerization of PA-NH2 should be responsive for greater cytotoxicity, rather than the membrane affinity. This study provides an in-depth understanding of the role of charge properties in the polymerization behavior of DPAs and seeks their potential biomedical applications.


Asunto(s)
Péptidos , Agua , Estructura Molecular , Péptidos/química , Polimerizacion , Agua/química
4.
Macromol Rapid Commun ; 43(18): e2200176, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35451187

RESUMEN

Bacterial infection can delay wound healing, causing wounds to deteriorate and even threaten the patient's life. Recently, although many composite hydrogels as wound dressing have been developed, it is still highly desired to construct photothermal hydrogels with antimicrobial and antioxidant properties to accelerate the infected wound healing. In this work, a hyaluronic acid (HA)-based composite hydrogel consisting of a dopamine-substituted antimicrobial peptide (DAP) and Iron (III) ions is developed, which exhibits photothermal-assisted promotion and acceleration of healing process of bacteria-infected wounds. DAP, serving as both antimicrobial agent and ROS-scavenger, forms Schiff's base bonds with aldehyde hyaluronic acid (AHA) and iron-catechol coordination bonds to reinforce the composite hydrogel. The presence of Fe3+ can also promote covalent polymerization of dopamine, which endows the hydrogel with photothermal capacity. The in vitro and in vivo experiments prove that the composite hydrogel can effectively accelerate the infected wound healing process, including antibacterial, accelerated collagen deposition, and re-epithelization. This study suggests that the multifunctional composite hydrogel possesses remarkable potential for bacteria-infected wound healing by combining inherent antimicrobial activity, antioxidant capability, and photothermal effect.


Asunto(s)
Antiinfecciosos , Hidrogeles , Adhesivos/química , Aldehídos , Antibacterianos/química , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Péptidos Antimicrobianos , Antioxidantes/química , Antioxidantes/farmacología , Catecoles , Colágeno , Dopamina , Humanos , Ácido Hialurónico/química , Ácido Hialurónico/farmacología , Hidrogeles/química , Hidrogeles/farmacología , Iones , Hierro , Especies Reactivas de Oxígeno , Cementos de Resina , Cicatrización de Heridas
5.
Small ; 18(7): e2106291, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34936199

RESUMEN

The suitable size of multifunctional nanomedicines strongly influences their physicochemical properties and actions in biological systems, for example, prolonged blood circulation time, efficient tumor accumulation, and deep tumor penetration. However, it is still a great challenge to construct size-transformable nanoparticles (NPs) for both efficient accumulation and penetration throughout tumor tissue. Herein, a size-transformed multifunctional NP is developed through a simple bicomponent assembling strategy for enhanced tumor penetration and efficient photo-chemo combined antitumor therapy, due to the acidic tumor microenvironment and near infrared-laser irradiation induced size-shrink. This multifunctional bicomponent NP (PP NP) driven by electrostatic interaction is composed of negatively charged peptide amphiphile (PA1) and positively charged peptide prodrug (PA2). PP NPs (≈170 nm) have been proven to improve blood circulation time and stability in biological environments. Interestingly, PP NPs can reassemble small NPs (<30 nm) by responding to acidic tumor microenvironment and near-infrared laser irradiation, which facilitates deep tumor penetration and improves cellular internalization. By integrating fluorescence imaging, tumor targeting, deep tumor penetration, and combined photo-chemotherapy, PP NPs exhibit excellent in vivo antitumor efficacy. This study might provide an insight for developing a bicomponent assembling system with efficient tumor penetration and multimode for antitumor therapy.


Asunto(s)
Nanopartículas , Línea Celular Tumoral , Nanopartículas/química , Péptidos/química , Fototerapia/métodos , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA