Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Nat Commun ; 15(1): 3336, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637528

RESUMEN

To understand aging impact on the circadian rhythm, we screened for factors influencing circadian changes during aging. Our findings reveal that LKRSDH mutation significantly reduces rhythmicity in aged flies. RNA-seq identifies a significant increase in insulin-like peptides (dilps) in LKRSDH mutants due to the combined effects of H3R17me2 and H3K27me3 on transcription. Genetic evidence suggests that LKRSDH regulates age-related circadian rhythm changes through art4 and dilps. ChIP-seq analyzes whole genome changes in H3R17me2 and H3K27me3 histone modifications in young and old flies with LKRSDH mutation and controls. The results reveal a correlation between H3R17me2 and H3K27me3, underscoring the role of LKRSDH in regulating gene expression and modification levels during aging. Overall, our study demonstrates that LKRSDH-dependent histone modifications at dilps sites contribute to age-related circadian rhythm changes. This data offers insights and a foundational reference for aging research by unveiling the relationship between LKRSDH and H3R17me2/H3K27me3 histone modifications in aging.


Asunto(s)
Código de Histonas , Histonas , Histonas/genética , Histonas/metabolismo , Ritmo Circadiano/genética , Genoma
2.
Am J Physiol Gastrointest Liver Physiol ; 326(6): G643-G658, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38564323

RESUMEN

Unacylated ghrelin (UAG), the unacylated form of ghrelin, accounts for 80%-90% of its circulation. Accumulated studies have pointed out that UAG may be used to treat metabolic disorders. This study aimed to investigate the effect of intestinal perfusion of UAG on metabolically associated fatty liver disease (MAFLD) induced by a high-fat diet and its possible mechanisms. Neuronal retrograde tracking combined with immunofluorescence, central administration of a glucagon-like peptide-1 receptor (GLP-1R) antagonist, and hepatic vagotomy was performed to reveal its possible mechanism involving a central glucagon-like peptide-1 (GLP-1) pathway. The results showed that intestinal perfusion of UAG significantly reduced serum lipids, aminotransferases, and food intake in MAFLD rats. Steatosis and lipid accumulation in the liver were significantly alleviated, and lipid metabolism-related enzymes in the liver were regulated. UAG upregulated the expression of GLP-1 receptor (GLP-1R) in the paraventricular nucleus (PVN) and GLP-1 in the nucleus tractus solitarii (NTS), as well as activated GLP-1 neurons in the NTS. Furthermore, GLP-1 fibers projected from NTS to PVN were activated by the intestinal perfusion of UAG. However, hepatic vagotomy and GLP-1R antagonists delivered into PVN before intestinal perfusion of UAG partially attenuated its alleviation of MAFLD. In conclusion, intestinal perfusion of UAG showed a therapeutic effect on MAFLD, which might be related to its activation of the GLP-1 neuronal pathway from NTS to PVN. The present results provide a new strategy for the treatment of MAFLD.NEW & NOTEWORTHY Intestinal perfusion of UAG, the unacylated form of ghrelin, has shown promising potential for treating MAFLD. This study unveils a potential mechanism involving the central GLP-1 pathway, with UAG upregulating GLP-1R expression and activating GLP-1 neurons in specific brain regions. These findings propose a novel therapeutic strategy for MAFLD treatment through UAG and its modulation of the GLP-1 neuronal pathway.


Asunto(s)
Ghrelina , Péptido 1 Similar al Glucagón , Receptor del Péptido 1 Similar al Glucagón , Animales , Ghrelina/metabolismo , Ghrelina/farmacología , Masculino , Péptido 1 Similar al Glucagón/metabolismo , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Hígado/metabolismo , Hígado/efectos de los fármacos , Dieta Alta en Grasa , Metabolismo de los Lípidos/efectos de los fármacos , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Perfusión/métodos , Núcleo Hipotalámico Paraventricular/metabolismo , Núcleo Hipotalámico Paraventricular/efectos de los fármacos , Vagotomía
3.
ACS Appl Mater Interfaces ; 16(7): 9313-9322, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38323399

RESUMEN

Liquid crystal elastomers (LCEs) are a kind of polymer network that combines the entropic elasticity of polymer networks and the mesogenic unit by means of mild cross-linking. LCEs have been extensively investigated in various fields, including artificial muscles, actuators, and microrobots. However, LCEs are characterized by the poor mechanical properties of the light polymers themselves. In this study, we propose to prepare a carbon nanotube/liquid crystal elastomer (CNT/LCE) composite yarn by electrospinning technology and a two-step cross-linking strategy. The CNT/LCE composite yarn exhibits a reversible shrinkage ratio of nearly 70%, a tensile strength of 16.45 MPa, and a relatively sensitive response speed of ∼3 s, enabling a fast response by photothermal actuation. The research disclosed in this article may provide new insights for the development of artificial muscles and next-generation smart robots.

4.
Adv Sci (Weinh) ; 11(17): e2400557, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38419378

RESUMEN

In nature, spider web is an interwoven network with high stability and elasticity from silk threads secreted by spider. Inspired by the structure of spider webs, light-driven liquid crystal elastomer (LCE) active yarn is designed with super-contractile and robust weavability. Herein, a novel biomimetic gold nanorods (AuNRs) @LCE yarn soft actuator with hierarchical structure is fabricated by a facile electrospinning and subsequent photocrosslinking strategies. Meanwhile, the inherent mechanism and actuation performances of the as-prepared yarn actuator with interleaving network are systematically analyzed. Results demonstrate that thanks to the unique "like-spider webs" structure between fibers, high molecular orientation within the LCE microfibers and good flexibility, they can generate super actuation strain (≈81%) and stable actuation performances. Importantly, benefit from the robust covalent bonding at the organic-inorganic interface, photopolymerizable AuNRs molecules are uniformly introduced into the polymer backbone of electrospun LCE yarn to achieve tailorable shape-morphing under different light intensity stimulation. As a proof-of-concept illustration, light-driven artificial muscles, micro swimmers, and hemostatic bandages are successfully constructed. The research disclosed herein can offer new insights into continuous production and development of LCE-derived yarn actuator that are of paramount significance for many applications from smart fabrics to flexible wearable devices.

5.
Nat Mater ; 23(3): 347-355, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37443381

RESUMEN

Transition metal dichalcogenide (TMD) nanotubes offer a unique platform to explore the properties of TMD materials at the one-dimensional limit. Despite considerable efforts thus far, the direct growth of TMD nanotubes with controllable chirality remains challenging. Here we demonstrate the direct and facile growth of high-quality WS2 and WSe2 nanotubes on Si substrates using catalytic chemical vapour deposition with Au nanoparticles. The Au nanoparticles provide unique accommodation sites for the nucleation of WS2 or WSe2 shells on their surfaces and seed the subsequent growth of nanotubes. We find that the growth mode of nanotubes is sensitive to the temperature. With careful temperature control, we realize ~79% WS2 nanotubes with single chiral angles, with a preference of 30° (~37%) and 0° (~12%). Moreover, we demonstrate how the geometric, electronic and optical properties of the synthesized WS2 nanotubes can be modulated by the chirality. We anticipate that this approach using Au nanoparticles as catalysts will facilitate the growth of TMD nanotubes with controllable chirality and promote the study of their interesting properties and applications.

6.
Life Sci Alliance ; 7(1)2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37914396

RESUMEN

Circadian rhythms are essential physiological feature for most living organisms. Previous studies have shown that epigenetic regulation plays a crucial role. There is a knowledge gap in the chromatin state of some key clock neuron clusters. In this study, we show that circadian rhythm is affected by the epigenetic regulator Polycomb (Pc) within the Drosophila clock neurons. To investigate the molecular mechanisms underlying the roles of Pc in these clock neuron clusters, we use targeted DamID (TaDa) to identify genes significantly bound by Pc in the neurons marked by C929-Gal4 (including l-LNvs cluster), R6-Gal4 (including s-LNvs cluster), R18H11-Gal4 (including DN1 cluster), and DVpdf-Gal4, pdf-Gal80 (including LNds cluster). It shows that Pc binds to the genes involved in the circadian rhythm pathways, arguing a direct role for Pc in regulating circadian rhythms through specific clock genes. This study shows the identification of Pc targets in the clock neuron clusters, providing potential resource for understanding the regulatory mechanisms of circadian rhythms by the PcG complex. Thus, this study provided an example for epigenetic regulation of adult behavior.


Asunto(s)
Proteínas de Drosophila , Neuropéptidos , Animales , Drosophila/metabolismo , Epigénesis Genética , Neuropéptidos/metabolismo , Proteínas de Drosophila/metabolismo , Ritmo Circadiano/genética , Neuronas/metabolismo , Proteínas del Grupo Polycomb/genética , Proteínas del Grupo Polycomb/metabolismo
7.
Int J Biol Macromol ; 257(Pt 2): 128741, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38101674

RESUMEN

Due to the overuse of antimicrobial drugs, bacterial resistance became an urgent problem to be solved. In this study, carbon quantum dots (CQDs) with high photodynamic antibacterial activity were synthesized by a one-pot hydrothermal method and introduced into bacterial cellulose (BC) dispersion solution. Through a wet-spinning and wet-twisting processing strategy, bionic ordering nanocomposite macrofiber (BC/CQDs-based yarn) based on BC were obtained. The results showed that BC/CQDs-based yarn had excellent tensile strength (226.8 MPa) and elongation (22.2 %). Utilizing the light-driven generation of singlet oxygen (1O2) and hydroxyl radical (·OH), BC/CQDs-based yarn demonstrated remarkable antibacterial efficacy, with 99.9999 % (6 log, P < 0.0001) and 96.54 % (1.46 log, P < 0.0004) effectiveness against E. coli and S. aureus, respectively. At the same time, BC/CQDs-based yarn also displayed the characteristics of photothermal, fluorescent, and biodegradability. In summary, the application potential of BC/CQDs-based yarn is significant, opening up a new strategy for the development of sustainable green weaving and bio-based multi-function yarn.


Asunto(s)
Puntos Cuánticos , Carbono , Celulosa/farmacología , Escherichia coli , Staphylococcus aureus , Antibacterianos/farmacología , Bacterias
8.
Nano Lett ; 23(24): 11982-11988, 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38051759

RESUMEN

The strained interface of core@shell nanocrystals (NCs) can effectively modulate the energy level alignment, thereby significantly affecting the optical properties. Herein, the unique photoluminescence (PL) response of doped Mn ions is introduced as a robust probe to detect the targeted pressure-strain relation of CdS@ZnS NCs. Results show that the core experiences actually less pressure than the applied external pressure, attributed to the pressure-induced optimized interface that reduces the compressive strain on core. The pressure difference between core and shell increases the conduction band and valence band offsets and further achieves the core@shell configuration transition from quasi type II to type I. Accordingly, the PL intensity of CdS@ZnS NCs slightly increases, along with a faster blue-shift rate of PL peak under low pressure. This study elucidates the interplay between external physical pressure and interfacial chemical stress for core@shell NCs, leading to precise construction of interface engineering for practical applications.

9.
Artículo en Inglés | MEDLINE | ID: mdl-37908058

RESUMEN

Fiber-based supercapacitors (FSCs) exhibit desirable application potential and development prospects in wearable energy storage devices because of their flexibility and wearability. However, the low capacity in the unit volume and insufficient fiber strength hinder their further development in practical application. Herein, the MnO2 nanomaterials with regulatable crystalline structure were synthesized by one-step hydrothermal strategy. The formation of the MnO2 crystalline structure involved the "crimp-phase transition" process. Among them, the 2 × 2 tunnel type α-MnO2 nanowires exhibited excellent electrochemical capacitance (43.8 F g-1), high rate performance (61%, 0.25 to 6 A g-1), and remarkable cyclic stability (99%), which can be attributed to their good symmetry in space and high shared vertices proportion. On this basis, the α-MnO2 nanowires were coblended with GO to construct MnO2/rGO hybrid fibers by scalable continuous wet spinning and in situ acid reduction. Noteworthily, in MnO2/rGO hybrid fibers, the doping amount of MnO2 nanowires as high as 50 wt % could be achieved, while the strength reached 11.73 MPa, which can be ascribed to the superior surface morphology of MnO2 nanowires and the unique cement wall structure of hybrid fibers. Finally, the obtained hybrid fiber electrodes were assembled into symmetrical FSCs. Notably, the FSCs delivered remarkable volume specific capacitance (129.5 F cm-3) and impressive energy density (18 mWh cm-3) at 1.75 A cm-3. In addition, the assembled all-solid-state FSCs indicated excellent deformability and application potential. This work offers some insight for promoting the continuous preparation of fiber electrodes, the development of FSCs, and practical application in wearable energy textile.

10.
Med Biol Eng Comput ; 61(12): 3319-3333, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37668892

RESUMEN

Eye diseases often affect human health. Accurate detection of the optic disc contour is one of the important steps in diagnosing and treating eye diseases. However, the structure of fundus images is complex, and the optic disc region is often disturbed by blood vessels. Considering that the optic disc is usually a saliency region in fundus images, we propose a weakly-supervised optic disc detection method based on the fully convolution neural network (FCN) combined with the weighted low-rank matrix recovery model (WLRR). Firstly, we extract the low-level features of the fundus image and cluster the pixels using the Simple Linear Iterative Clustering (SLIC) algorithm to generate the feature matrix. Secondly, the top-down semantic prior information provided by FCN and bottom-up background prior information of the optic disc region are used to jointly construct the prior information weighting matrix, which more accurately guides the decomposition of the feature matrix into a sparse matrix representing the optic disc and a low-rank matrix representing the background. Experimental results on the DRISHTI-GS dataset and IDRiD dataset show that our method can segment the optic disc region accurately, and its performance is better than existing weakly-supervised optic disc segmentation methods. Graphical abstract of optic disc segmentation.


Asunto(s)
Glaucoma , Disco Óptico , Humanos , Disco Óptico/diagnóstico por imagen , Fondo de Ojo , Algoritmos , Redes Neurales de la Computación
11.
Environ Res ; 236(Pt 1): 116732, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37495065

RESUMEN

Chinese rural domestic waste has increased considerably with the modernization of agriculture and urbanization. Pyrolysis gasification is a common high-temperature waste treatment method. However, this method is usually accompanied by a large amount of particle emission. In this study, a rural domestic waste pyrolysis gasification station in Gansu Province, Northwest China, was selected for research. The particle emission characteristics of this station were analyzed, and the results showed that the original particle removal technologies were inefficient in fine particles. Hence, a new method of fine particle treatment, i.e., Cloud-Air-Purifying (CAP) technology, was explored herein. In CAP, fine particles grow in size via heterogeneous condensation in a supersaturated water vapor environment and are then collected efficiently using a supergravity field. A laboratory-scale pyrolysis gasifier and CAP equipment were built. Moreover, the CAP removal efficiency for particles generated from four typical rural domestic waste categories was studied. The results showed that CAP technology considerably increased the efficiency of fine particle removal. However, the removal efficiency for particles released owing to the incineration of wood was only ∼75%. This was because the tar substances formed during wood pyrolysis were attached to the surface of escaping particles, which led to a decrease in their hydrophilicity and particle condensation growth. To address this issue, the improvement in particle hydrophilicity using different surfactants was studied via molecular dynamic simulations. When the increase in water molecule adsorption, surface polarity, and the solid-liquid interaction energy for different surfactants were compared, alkylphenol ethoxylate (OP10) proved to be the most effective surfactant. Finally, the improved CAP technology combined with OP10 was applied to the on-site pyrolysis gasification flue gas treatment. Long term monitoring of the proposed technology revealed that particle removal efficiency remained >94%, exhibiting excellent fine particle removal. The successful application of the proposed technology demonstrates its potential for further application.

12.
Environ Res ; 231(Pt 1): 116041, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37150385

RESUMEN

Bisphenol F (BPF) and bisphenol S (BPS) are emerging bisphenols, which have become the main substitutes for bisphenol A (BPA) in industrial production and are also considered as new environmental pollution challenges. Thus, the necessity for an effective approach to remove BPF and BPS is essential. In this study, fulvic acid (FA) was used to modify Co-Fe binary metals (CFO) for peroxymonosulfate (PMS) activation. The characterization results demonstrated that CFO changed significantly in morphology after compounding with FA, with smaller particle size and 5.6 times larger specific surface area, greatly increasing the active sites of catalyst; Moreover, humic acid-like compounds increased the surface functional groups of CFO, especially phenolic hydroxyl, which could effectively prolong the PMS activation. The concentration of all reactive species, such as SO4•-, •OH, O2•-, and 1O2 increased in FA@CFO/PMS system. As a result, the degradation efficiency of CFO for both BPF and BPS was significantly improved after compounding FA, which also had a wide range of pH applications. The degradation pathways of both BPF and BPS were proposed based on liquid chromatography-mass spectrometry (LC-MS) analysis and the density functional theory (DFT) calculations. Our findings are expected to provide new strategies and methods for remediation of environmental pollution caused by emerging bisphenols.


Asunto(s)
Compuestos de Bencidrilo , Espectrometría de Masas en Tándem , Cromatografía Liquida , Compuestos de Bencidrilo/análisis
13.
Small ; 19(39): e2301957, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37231557

RESUMEN

Radiative cooling materials that can dynamically control solar transmittance and emit thermal radiation into cold outer space are critical for smart thermal management and sustainable energy-efficient buildings. This work reports the judicious design and scalable fabrication of biosynthetic bacterial cellulose (BC)-based radiative cooling (Bio-RC) materials with switchable solar transmittance, which are developed by entangling silica microspheres with continuously secreted cellulose nanofibers during in situ cultivation. Theresulting film shows a high solar reflection (95.3%) that can be facilely switched between an opaque state and a transparent state upon wetting. Interestingly, the Bio-RC film exhibits a high mid-infrared emissivity (93.4%) and an average sub-ambient temperature drop of ≈3.7 °C at noon. When integrating with a commercially available semi-transparent solar cell, the switchable solar transmittance of Bio-RC film enables an enhancement of solar power conversion efficiency (opaque state: 0.92%, transparent state: 0.57%, bare solar cell: 0.33%). As a proof-of-concept illustration, an energy-efficient model house with its roof built with Bio-RC-integrated semi-transparent solar cell is demonstrated. This research can shine new light on the design and emerging applications of advanced radiative cooling materials.

14.
Mater Horiz ; 10(7): 2587-2598, 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37092244

RESUMEN

Liquid crystal elastomer (LCE) fibers exhibit large deformation and reversibility, making them an ideal candidate for soft actuators. It is still challenging to develop a scalable strategy and endow fiber actuators with photoelectric functions to achieve tailorable photo-electro-thermal responsiveness and rapid large actuation deformation. Herein, we fabricated a multiresponsive actuator that consists of LCE long fibers obtained by continuous dry spinning and further coated it with polydopamine (PDA)-modified MXene ink. The designed PDA@MXene-integrated LCE fiber is used for shape-deformable and multi-trigger actuators that can be photo- and electro-thermally actuated. The proposed LCE fiber actuator combines an excellent photothermal and long-term electrically conductive PDA@MXene and a shape-morphing LCE fiber, enabling their robust mechanical flexibility, multiple fast responses (∼0.4 s), and stable and large actuation deformation (∼60%). As a proof-of-concept, we present near-infrared light-driven artificial muscle that can lift 1000 times the weight and an intelligent circuit switch with stable controllability and fast responsiveness (∼0.1 s). Importantly, an adaptive smart window system that integrates light-driven energy harvesting/conversion functions is ingeniously constructed by the integration of a propellable curtain woven by the designed fiber and solar cells. This work can provide insights into the development of advanced intelligent materials toward soft robotics, sustainable energy savings and beyond.

15.
Small ; 19(21): e2207384, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36734203

RESUMEN

Biomechanical and nanomechanical energy harvesting systems have gained a wealth of interest, resulting in a plethora of research into the development of biopolymeric-based devices as sustainable alternatives. Piezoelectric, triboelectric, and hybrid nanogenerator devices for electrical applications are engineered and fabricated using innovative, sustainable, facile-approach flexible composite films with high performance based on bacterial cellulose and BaTiO3 , intrinsically and structurally enhanced by Pluronic F127, a micellar cross-linker. The voltage and current outputs of the modified versions with multiwalled carbon nanotube as a conductivity enhancer and post-poling effect are 38 V and 2.8 µA cm-2 , respectively. The multiconnective devices' power density can approach 10 µW cm-2 . The rectified output power is capable of charging capacitors, driving light-emitting diode lights, powering a digital watch and interfacing with a commercial microcontroller board to operate as a piezoresistive force sensor switch as a proof of concept. Magnetoelectric studies show that the composites have the potential to be incorporated into magnetoelectric systems. The biopolymeric composites prove to be desirable candidates for multifunctional energy harvesters and electronic devices.

16.
J Colloid Interface Sci ; 637: 251-261, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36706721

RESUMEN

Owing to price-boom and low-reserve of Lithium ion batteries (LIBs), cost-cutting and well-stocked sodium ion batteries (SIBs) attract a lot of attention, aiming to develop an effective energy storage and conversion equipment. As a typical anode for SIBs, Iron sulfide (FeS) is difficult to maintain the high theoretical capacity. Structural instability and inherent low conductivity limit the cyclic and rate performance of FeS. Herein, hierarchical architecture of FeS-FeSe2 coated with nitrogen-doped carbon (NC) is obtained by single-step solvothermal method and two-stage high-temperature treatments. Specifically, lattice imperfections provided by heterogeneous interfaces increase the Na+ storage sites and fasten ion/electron transfer. Synergistic effect induced by the hierarchical architecture effectively enhances the electrochemical activity and reduces the resistance, which contributes to the transfer kinetics of Na+. In addition, the phenomenon that heterogeneous interfaces provide more active site and extra migration Na+ path is also proved by density functional theory (DFT). As an anode for SIBs, FeS-FeSe2/NC (FSSe/C) delivers highly reversible capacity (704.5 mAh·g-1 after 120 cycles at 0.2 A·g-1), excellent rate performance (326.3 mAh·g-1 at 12 A·g-1) and long-lasting durability (492.3 mAh·g-1 after 1000 cycles at 4 A·g-1 with 100 % capacity retention). Notably, the full battery, assembled with FSSe/C and Na3V2(PO4)3/C (NVP/C), delivers reversible capacity of 252.1 mAh·g-1 after 300 cycles at 1 A·g-1. This work provides a facile method to construct a hierarchical architecture anode for high-performance SIBs.

17.
Nanoscale ; 15(2): 625-630, 2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36504045

RESUMEN

Flexible zinc-air batteries (ZABs) are expected to become a promising candidate in energy storage equipment for wearable electronic devices. However, the sluggish kinetics of the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) have impeded the development of ZABs. Herein, an FeCo- and N-codoped bifunctional electrocatalyst (FeCoNCF) is fabricated by simple one-pot and pyrolysis strategies. Concretely, the bacterial cellulose (BC) and Prussian blue analogue (PBA) derived transition metal and nitrogen doped carbon (M-N-C) composites provide ORR and OER active sites. FeCoNCF exhibits outstanding ORR and OER activities. It displays a favorable high half-wave potential (0.81 V) and a low overpotential at 10 mA cm-2 (341 mV), which are on a par with commercial Pt/C and RuO2, and shows outstanding stability. The sandwich-type flexible zinc-air battery containing FeCoNCF shows a favorable power density (49.29 mW cm-2) and superior cycling stability.

18.
J Hazard Mater ; 439: 129676, 2022 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-36104904

RESUMEN

Enzyme membrane systems (EMS) have generated considerable interest because of their advantages of accelerating reactions, eliminating product inhibition, and enhancing conversion rates. However, there are deficiencies in the efficient fabrication of affinity carrier membranes and dynamic catalytic separation properties. Herein, a strong and highly flexible spunlaced viscose/bacterial cellulose (BC) composite membrane in situ embedded with graphene oxide (GO) was developed by combining a scalable bio-synthesis method with atom transfer radical polymerization technology. Notably, the layer-by-layer growth of BC on composite film and the addition of GO resulted in an entangled network with strong hydrogen bonding, endowing the resulting membrane with superior mechanical properties and flexibility, while facilitating a gradient structure and porous transport channels. Subsequently, a novel and highly efficient EMS was constructed by using abundant molecular brushes on composite membrane as immobilized enzyme carrier. The resulting EMS exhibited a high throughput (2.17 L/min*m2) and an interception rate (98.64%) in dynamic catalytic sulfonamide antibiotic wastewater activated with syringaldehyde mediator. Meanwhile, the removal rates of sulphapyridine and sulfamethazine were 97.20% and 94.78% under 0.14 MPa and 15 min, respectively. This efficient and scalable manufacturing strategy is of great significance and may pave a novel pathway for antibiotics wastewater treatment and recycling.


Asunto(s)
Antibacterianos , Celulosa , Antibacterianos/farmacología , Bacterias , Celulosa/química , Grafito , Porosidad , Sulfanilamida , Sulfonamidas
19.
Nanomaterials (Basel) ; 12(15)2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-35957134

RESUMEN

Triboelectric nanogenerator (TENG), as a green energy harvesting technology, has aroused tremendous interest across many fields, such as wearable electronics, implanted electronic devices, and human-machine interfaces. Fabric and fiber-structured materials are excellent candidates for TENG materials due to their inherent flexibility, low cost, and high wearing comfort. Consequently, it is crucial to combine TENG with fabric/fiber materials to simultaneously leverage their mechanical energy harvesting and wearability advantages. In this review, the structure and fundamentals of TENG are briefly explained, followed by the introduction of three distinct methods for preparing fabric/fiber structures: spinning and weaving, wet spinning, and electrospinning. In the meantime, their applications have been discussed, focusing primarily on energy harvesting and wearable self-powered sensors. Finally, we discussed the future and challenges of fabric and fiber-based TENGs.

20.
Biomater Adv ; 136: 212799, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35929334

RESUMEN

Numerous tissues in the human body have fibrous structures, including the extracellular matrix, muscles, and heart, which perform critical biological functions and have exceptional mechanical strength. Due to their high-water content, softness, biocompatibility and elastic nature, hydrogels resemble biological tissues. Traditional hydrogels, on the other hand, have weak mechanical properties and lack tissue-like fibrous structures, limiting their potential applications. Thus, bio-inspired hydrogels with fibrous architectures have piqued the curiosity of biomedical researchers. Here, we review fabrication strategies for fibrous hydrogels and their recent progress in the biomedical fields of wound dressings, drug delivery, tissue engineering scaffolds and bioadhesives. Challenges and future perspectives are also discussed.


Asunto(s)
Materiales Biocompatibles , Hidrogeles , Materiales Biocompatibles/uso terapéutico , Matriz Extracelular , Humanos , Hidrogeles/uso terapéutico , Ingeniería de Tejidos , Andamios del Tejido/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...