Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Sci Transl Med ; 15(726): eade4113, 2023 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-38091408

RESUMEN

Tumor-initiating cells (TICs) reprogram their metabolic features to meet their bioenergetic, biosynthetic, and redox demands. Our previous study established a role for wild-type isocitrate dehydrogenase 1 (IDH1WT) as a potential diagnostic and prognostic biomarker for non-small cell lung cancer (NSCLC), but how IDH1WT modulates NSCLC progression remains elusive. Here, we report that IDH1WT activates serine biosynthesis by enhancing the expression of phosphoglycerate dehydrogenase (PHGDH) and phosphoserine aminotransferase 1 (PSAT1), the first and second enzymes of de novo serine synthetic pathway. Augmented serine synthesis leads to GSH/ROS imbalance and supports pyrimidine biosynthesis, maintaining tumor initiation capacity and enhancing gemcitabine chemoresistance. Mechanistically, we identify that IDH1WT interacts with and stabilizes PHGDH and fragile X-related protein-1 (FXR1) by impeding their association with the E3 ubiquitin ligase parkin by coimmunoprecipitation assay and proximity ligation assay. Subsequently, stabilized FXR1 supports PSAT1 mRNA stability and translation, as determined by actinomycin D chase experiment and in vitro translation assay. Disrupting IDH1WT-PHGDH and IDH1WT-FXR1 interactions synergistically reduces NSCLC stemness and sensitizes NSCLC cells to gemcitabine and serine/glycine-depleted diet therapy in lung cancer xenograft models. Collectively, our findings offer insights into the role of IDH1WT in serine metabolism, highlighting IDH1WT as a potential therapeutic target for eradicating TICs and overcoming gemcitabine chemoresistance in NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Gemcitabina , Resistencia a Antineoplásicos , Serina/metabolismo , Vías Biosintéticas , Línea Celular Tumoral , Proteínas de Unión al ARN/metabolismo , Isocitrato Deshidrogenasa/metabolismo
2.
Nat Commun ; 14(1): 7661, 2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-37996458

RESUMEN

Elimination of cancer stem cells (CSCs) and reinvigoration of antitumor immunity remain unmet challenges for cancer therapy. Tumor-associated macrophages (TAMs) constitute the prominant population of immune cells in tumor tissues, contributing to the formation of CSC niches and a suppressive immune microenvironment. Here, we report that high expression of inhibitor of differentiation 1 (ID1) in TAMs correlates with poor outcome in patients with colorectal cancer (CRC). ID1 expressing macrophages maintain cancer stemness and impede CD8+ T cell infiltration. Mechanistically, ID1 interacts with STAT1 to induce its cytoplasmic distribution and inhibits STAT1-mediated SerpinB2 and CCL4 transcription, two secretory factors responsible for cancer stemness inhibition and CD8+ T cell recruitment. Reducing ID1 expression ameliorates CRC progression and enhances tumor sensitivity to immunotherapy and chemotherapy. Collectively, our study highlights the pivotal role of ID1 in controlling the protumor phenotype of TAMs and paves the way for therapeutic targeting of ID1 in CRC.


Asunto(s)
Neoplasias Colorrectales , Macrófagos , Humanos , Macrófagos/metabolismo , Inmunoterapia , Linfocitos T CD8-positivos , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/terapia , Neoplasias Colorrectales/metabolismo , Linfocitos T/metabolismo , Microambiente Tumoral/genética , Proteína 1 Inhibidora de la Diferenciación/genética , Proteína 1 Inhibidora de la Diferenciación/metabolismo
3.
Artículo en Inglés | MEDLINE | ID: mdl-37807411

RESUMEN

BACKGROUND: The Fule Cream (FLC) is an herbal formula widely used for the treatment of pediatric atopic dermatitis (AD), however, the main active components and functional mechanisms of FLC remain unclear. This study performed an initial exploration of the potential acting mechanisms of FLC in childhood AD treatment through analyses of an AD mouse model using network pharmacology, molecular docking technology, and RNA-seq analysis. METHODS: The main bioactive ingredients and potential targets of FLC were collected from the Traditional Chinese Medicine Systems Pharmacology Database (TCMSP) and SwissTargetPrediction databases. An herb-compound-target network was built using Cytoscape 3.7.2. The disease targets of pediatric AD were searched in the DisGeNET, Therapeutic Target Database (TTD), OMIM, DrugBank and GeneCards databases. The overlapping targets between the active compounds and the disease were imported into the STRING database for the construction of the protein-protein interaction (PPI) network. Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses of the intersection targets were performed, and molecular docking verification of the core compounds and targets was then performed using AutoDock Vina 1.1.2. The AD mouse model for experimental verification was induced by MC903. RESULTS: The herb-compound-target network included 415 nodes and 1990 edges. Quercetin, luteolin, beta-sitosterol, wogonin, ursolic acid, apigenin, stigmasterol, kaempferol, sitogluside and myricetin were key nodes. The targets with higher degree values were IL-4, IL-10, IL-1α, IL-1ß, TNFα, CXCL8, CCL2, CXCL10, CSF2, and IL-6. GO enrichment and KEGG analyses illustrated that important biological functions involved response to extracellular stimulus, regulation of cell adhesion and migration, inflammatory response, cellular response to cytokine stimulus, and cytokine receptor binding. The signaling pathways in the FLC treatment of pediatric AD mainly involve the PI3K-Akt signaling pathway, cytokine‒cytokine receptor interaction, chemokine signaling pathway, TNF signaling pathway, and NF-κB signaling pathway. The binding energy scores of the compounds and targets indicate a good binding activity. Luteolin, quercetin, and kaempferol showed a strong binding activity with TNFα and IL-4. CONCLUSION: This study illustrates the main bioactive components and potential mechanisms of FLC in the treatment of childhood AD, and provides a basis and reference for subsequent exploration.

4.
Front Pharmacol ; 14: 1118017, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37124193

RESUMEN

Aberrant mitophagy has been identified as a driver for energy metabolism disorder in most cardiac pathological processes. However, finding effective targeted agents and uncovering their precise modulatory mechanisms remain unconquered. Fuzi, the lateral roots of Aconitum carmichaelii, shows unique efficacy in reviving Yang for resuscitation, which has been widely used in clinics. As a main cardiotonic component of Fuzi, mesaconine has been proven effective in various cardiomyopathy models. Here, we aimed to define a previously unrevealed cardioprotective mechanism of mesaconine-mediated restoration of obstructive mitophagy. The functional implications of mesaconine were evaluated in doxorubicin (DOX)-induced heart failure models. DOX-treated mice showed characteristic cardiac dysfunction, ectopic myocardial energy disorder, and impaired mitophagy in cardiomyocytes, which could be remarkably reversed by mesaconine. The cardioprotective effect of mesaconine was primarily attributed to its ability to promote the restoration of mitophagy in cardiomyocytes, as evidenced by elevated expression of PINK1, a key mediator of mitophagy induction. Silencing PINK1 or deactivating mitophagy could completely abolish the protective effects of mesaconine. Together, our findings suggest that the cardioprotective effects of mesaconine appear to be dependent on the activation of PINK1-induced mitophagy and that mesaconine may constitute a promising therapeutic agent for the treatment of heart failure.

5.
Acta Pharm Sin B ; 13(4): 1631-1647, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37139431

RESUMEN

Pulmonary fibrosis (PF) is the pathological structure of incurable fibroproliferative lung diseases that are attributed to the repeated lung injury-caused failure of lung alveolar regeneration (LAR). Here, we report that repetitive lung damage results in a progressive accumulation of the transcriptional repressor SLUG in alveolar epithelial type II cells (AEC2s). The abnormal increased SLUG inhibits AEC2s from self-renewal and differentiation into alveolar epithelial type I cells (AEC1s). We found that the elevated SLUG represses the expression of the phosphate transporter SLC34A2 in AEC2s, which reduces intracellular phosphate and represses the phosphorylation of JNK and P38 MAPK, two critical kinases supporting LAR, leading to LAR failure. TRIB3, a stress sensor, interacts with the E3 ligase MDM2 to suppress SLUG degradation in AEC2s by impeding MDM2-catalyzed SLUG ubiquitination. Targeting SLUG degradation by disturbing the TRIB3/MDM2 interaction using a new synthetic staple peptide restores LAR capacity and exhibits potent therapeutic efficacy against experimental PF. Our study reveals a mechanism of the TRIB3-MDM2-SLUG-SLC34A2 axis causing the LAR failure in PF, which confers a potential strategy for treating patients with fibroproliferative lung diseases.

6.
Acta Pharm Sin B ; 13(3): 1110-1127, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36970190

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease with unclear etiology and limited treatment options. The median survival time for IPF patients is approximately 2-3 years and there is no effective intervention to treat IPF other than lung transplantation. As important components of lung tissue, endothelial cells (ECs) are associated with pulmonary diseases. However, the role of endothelial dysfunction in pulmonary fibrosis (PF) is incompletely understood. Sphingosine-1-phosphate receptor 1 (S1PR1) is a G protein-coupled receptor highly expressed in lung ECs. Its expression is markedly reduced in patients with IPF. Herein, we generated an endothelial-conditional S1pr1 knockout mouse model which exhibited inflammation and fibrosis with or without bleomycin (BLM) challenge. Selective activation of S1PR1 with an S1PR1 agonist, IMMH002, exerted a potent therapeutic effect in mice with bleomycin-induced fibrosis by protecting the integrity of the endothelial barrier. These results suggest that S1PR1 might be a promising drug target for IPF therapy.

7.
Lab Invest ; 102(10): 1054-1063, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35614340

RESUMEN

Macrophage polarization mediates the development of inflammatory diseases. However, the polarization status at various stages of gout is not fully understood. Our study aimed to define the evolution of macrophage polarization in acute and chronic gout. Normal human synovium and synovium with tophi were collected for immunofluorescence (IF). Rat gouty joints were collected for joint thickness assessment and pathological evaluation. Tissue mRNA expression of inducible nitric oxide synthase (iNOS) and arginase-1 (Arg-1) were evaluated. Mouse peritoneal macrophages and THP-1 derived macrophages were stimulated by monosodium urate (MSU) crystals and were collected for detection of interleukin (IL) -1ß and IL-37 levels and iNOS/Arg-1 ratio. Arg-1 and IL-37 were highly expressed in normal synovium and synovium with tophi. In rat gouty joints, the inflammatory cell counts and ankle thickness began to increase at 2 h, peaked at 24 h, and was decreased spontaneously. An increase in macrophages preceded the neutrophils infiltration. Infiltration of M1 was positively related with the severity of arthritis. M2 appeared in an early stage (at 2 h) of inflammation. The number of M1 macrophages was comparable to that of M2 from 2 to 12 h and exceeded M2 number at 18 h and 24 h. The ratios of M2/M1 reversed at 48 h and remained reversed until 120 h. In mice gouty joints, iNOS/Arg-1 mRNA ratio was significantly higher than the that in control group at 8 h. The proportion of neutrophils and M1-macrophages reached peak at 4 h in mice model with peritoneal gout. Concentration of IL-1ß and ratio of iNOS/Arg-1 were increased at 6 h, peaked at 48 h, and were then decreased at 72 h in vitro, while the concentration of IL-37 peaked at 2 h and then decreased. In summary, altered macrophage polarization was observed in various stages of gouty inflammation. Macrophages in acute gout were polarized into M1 at early stage and into M2 at later stage while the macrophages in chronic gout mainly were only polarized towards M2. The number of M1 rose with the progression of inflammation. Early increase of M2 was observed, which might be generated directly from M0.


Asunto(s)
Arginasa , Gota , Animales , Gota/metabolismo , Humanos , Inflamación/metabolismo , Macrófagos/metabolismo , Ratones , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , ARN Mensajero/metabolismo , Ácido Úrico/metabolismo
8.
Acta Pharm Sin B ; 12(2): 735-746, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35256943

RESUMEN

The cell cycle inhibitor P21 has been implicated in cell senescence and plays an important role in the injury-repair process following lung injury. Pulmonary fibrosis (PF) is a fibrotic lung disorder characterized by cell senescence in lung alveolar epithelial cells. In this study, we report that P21 expression was increased in alveolar epithelial type 2 cells (AEC2s) in a time-dependent manner following multiple bleomycin-induced PF. Repeated injury of AEC2s resulted in telomere shortening and triggered P21-dependent cell senescence. AEC2s with elevated expression of P21 lost their self-renewal and differentiation abilities. In particular, elevated P21 not only induced cell cycle arrest in AEC2s but also bound to P300 and ß-catenin and inhibited AEC2 differentiation by disturbing the P300-ß-catenin interaction. Meanwhile, senescent AEC2s triggered myofibroblast activation by releasing profibrotic cytokines. Knockdown of P21 restored AEC2-mediated lung alveolar regeneration in mice with chronic PF. The results of our study reveal a mechanism of P21-mediated lung regeneration failure during PF development, which suggests a potential strategy for the treatment of fibrotic lung diseases.

9.
Sci Transl Med ; 14(626): eabf0992, 2022 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-34985967

RESUMEN

High CD8+ T cell infiltration in colorectal cancer (CRC) should suggest a favorable prognosis and a satisfactory response to immunotherapy; however, the vast majority of patients with CRC do not benefit from immunotherapy due to poor T cell infiltration. Therefore, a better understanding of the mechanisms for T cell exclusion from CRC tumors is needed. Tribbles homolog 3 (TRIB3) has been implicated as an oncoprotein, but its role in regulating antitumor immune responses has not been defined. Here, we demonstrated that TRIB3 inhibits CD8+ T cell infiltration in various CRC mouse models. We showed that TRIB3 was acetylated by acetyltransferase P300, which inhibited ubiquitination and subsequent proteasomal degradation of TRIB3. Ectopically expressed TRIB3 inhibited signal transducer and activator of transcription 1 (STAT1) activation and STAT1-mediated CXCL10 transcription by enhancing the epidermal growth factor receptor signaling pathway, causing a reduction in tumor-infiltrating T cells. Genetic ablation of Trib3 or pharmacological acceleration of TRIB3 degradation with a P300 inhibitor increased T cell recruitment and sensitized CRCs to immune checkpoint blockade therapy. These findings identified TRIB3 as a negative modulator of CD8+ T cell infiltration in CRCs, highlighting a potential therapeutic target for treating immunologically "cold" CRCs.


Asunto(s)
Proteínas de Ciclo Celular , Neoplasias Colorrectales , Evasión Inmune , Proteínas Serina-Treonina Quinasas , Proteínas Represoras , Animales , Linfocitos T CD8-positivos , Proteínas de Ciclo Celular/metabolismo , Quimiocina CXCL10/metabolismo , Neoplasias Colorrectales/patología , Humanos , Inmunoterapia , Ratones , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Represoras/metabolismo , Factor de Transcripción STAT1/metabolismo , Transducción de Señal
10.
Cancer Innov ; 1(1): 92-113, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38089453

RESUMEN

Ferroptosis is a newly discovered form of cell death that is characterized by the accumulation of iron-dependent lipid peroxidation. Research on ferroptosis has seen exponential growth over the past few years. Tumor cells are strongly dependent on iron for their growth, which makes them develop mechanisms to increase iron uptake and inhibit iron output, thereby completing iron accumulation. Ferroptosis can be induced or inhibited by various stresses through multiple mechanisms, making it stands at the crossroads of stresses related cancer cell fate determination. In this review, we give a brief summary of ferroptosis hallmarks and provide a systematic analysis of the current molecular mechanisms and regulatory networks of diverse stress conditions on ferroptosis. We also discuss the relationships between ferroptosis and cancer therapy responses to further understand potential targets and therapeutic strategies for cancer treatment.

11.
Acta Pharm Sin B ; 11(10): 3105-3119, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34729304

RESUMEN

Pulmonary fibrosis (PF) is a chronic, progressive, fatal interstitial lung disease with limited available therapeutic strategies. We recently reported that the protein kinase glycogen synthase kinase-3ß (GSK-3ß) interacts with and inactivates the ubiquitin-editing enzyme A20 to suppress the degradation of the transcription factor CCAAT/enhancer-binding protein beta (C/EBPß) in alveolar macrophages (AMs), resulting in a profibrotic phenotype of AMs and promoting the development of PF. Here, we showed that chronic lung injury upregulated the stress response protein tribbles homolog 3 (TRIB3), which interacted with GSK-3ß and stabilized GSK-3ß from ubiquitination and degradation. Elevated GSK-3ß expression phosphorylated A20 to inhibit its ubiquitin-editing activity, causing the accumulation of C/EBPß and the production of several profibrotic factors in AMs and promoting PF development. Activated C/EBPß, in turn, increased the transcription of TRIB3 and GSK-3ß, thereby establishing a positive feedback loop in AMs. The knockdown of TRIB3 expression or the pharmacologic disruption of the TRIB3‒GSK-3ß interaction was an effective PF treatment. Our study reveals an intact profibrotic axis of TRIB3‒GSK-3ß‒A20‒C/EBPß in AMs, which represents a target that may provide a promising treatment strategy for PF.

13.
Immunity ; 54(9): 2042-2056.e8, 2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34407391

RESUMEN

Recruitment of immune cells to the site of inflammation by the chemokine CCL1 is important in the pathology of inflammatory diseases. Here, we examined the role of CCL1 in pulmonary fibrosis (PF). Bronchoalveolar lavage fluid from PF mouse models contained high amounts of CCL1, as did lung biopsies from PF patients. Immunofluorescence analyses revealed that alveolar macrophages and CD4+ T cells were major producers of CCL1 and targeted deletion of Ccl1 in these cells blunted pathology. Deletion of the CCL1 receptor Ccr8 in fibroblasts limited migration, but not activation, in response to CCL1. Mass spectrometry analyses of CCL1 complexes identified AMFR as a CCL1 receptor, and deletion of Amfr impaired fibroblast activation. Mechanistically, CCL1 binding triggered ubiquitination of the ERK inhibitor Spry1 by AMFR, thus activating Ras-mediated profibrotic protein synthesis. Antibody blockade of CCL1 ameliorated PF pathology, supporting the therapeutic potential of targeting this pathway for treating fibroproliferative lung diseases.


Asunto(s)
Quimiocina CCL1/metabolismo , Fibroblastos/metabolismo , Proteínas de la Membrana/metabolismo , Miofibroblastos/metabolismo , Fosfoproteínas/metabolismo , Fibrosis Pulmonar/metabolismo , Receptores del Factor Autocrino de Motilidad/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Diferenciación Celular/fisiología , Fibroblastos/patología , Humanos , Ratones , Miofibroblastos/patología , Fibrosis Pulmonar/patología , Transducción de Señal/fisiología
14.
Adv Exp Med Biol ; 1208: 131-173, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34260026

RESUMEN

Macroautophagy is an important biological process in eukaryotic cells by which longevity proteins, misfolded proteins, and damaged organelles are degraded. The autophagy process consists of three key steps: (1) the formation of autophagosomes; (2) the fusion of the autophagosomes with lysosomes; and (3) the degradation of the contents of autolysosomes. If any of the three steps is impaired, autophagy will not be able to complete its biological function. Dysfunctional or blocked autophagy is closely involved in the pathogenesis of a variety of diseases. The accurate determination of the autophagy activity in vivo and in vitro has become a challenge in the field of autophagy research. At present, the most widely used detection method to determine autophagy activity in mammalian cells is to quantify LC3B in the cells by Western blot, or to observe the formation and changes of autophagosomes and autolysosomes by immunofluorescence and electron microscopy. However, ignoring the dynamic characteristics of autophagy and only evaluating the number of autophagosomes or the presence of LC3B cannot completely reflect the activation or a blockage of the autophagy system, and objectively analyze its real role in the occurrence and development of a disease. For example, the accumulation of autophagosomes and autolysosomes can occur through an increase in substrate to be degraded after the activation of autophagy, or it may be caused by the partial obstruction or blockage of autophagy. In this chapter, new and familiar ways to detect the autophagic flux are methodically summarized to provide researchers with a multi-angled viewpoint.


Asunto(s)
Autofagosomas , Autofagia , Animales , Células Eucariotas , Lisosomas
15.
Sci Transl Med ; 13(586)2021 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-33762435

RESUMEN

Most basal-like breast cancers (BLBCs) are triple-negative breast cancers (TNBCs), which have the worst prognosis and distant metastasis-free survival among breast cancer subtypes. Now, no targeted therapies are available for patients with BLBC due to the lack of reliable and effective molecular targets. Here, we performed the BLBC tissue microarray-based immunohistochemical analysis and showed that Faciogenital Dysplasia 5 (FGD5) abundance is associated with poor prognosis in BLBCs. FGD5 deletion decreased the proliferation, invasion, and tumorsphere formation capacity of BLBC cells. Furthermore, genetic inhibition of Fgd5 in mouse mammary epithelial cells attenuated BLBC initiation and progression by reducing the self-renewal ability of tumor-initiating cells. In addition, FGD5 abundance was positively correlated with the abundance of epidermal growth factor receptor (EGFR) in BLBCs. FGD5 ablation decreased EGFR abundance by reducing EGFR stability in TNBC cells in 2D and 3D culture conditions. Mechanistically, FGD5 binds to EGFR and interferes with basal EGFR ubiquitination and degradation induced by the E3 ligase ITCH. Impaired EGFR degradation caused BLBC cell proliferation and promoted invasive properties and self-renewal. To verify the role of the FGD5-EGFR interaction in the regulation of EGFR stability, we screened a cell-penetrating α-helical peptide PER3 binding with FGD5 to disrupt the interaction. Treatment of BLBC patient-derived xenograft-bearing mice with the peptide PER3 disrupting the FGD5-EGFR interaction either with or without chemotherapy reduced BLBC progression. Our study identified FGD5 as a positive modulator of tumor-initiating cells and suggests a potential therapeutic option for the BLBC subtype of breast cancer.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido/genética , Células Madre Neoplásicas , Neoplasias de la Mama Triple Negativas , Animales , Receptores ErbB , Femenino , Humanos , Ratones , Neoplasias de la Mama Triple Negativas/genética
16.
Nat Commun ; 11(1): 6316, 2020 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-33298911

RESUMEN

The transcription factor MYC is deregulated in almost all human cancers, especially in aggressive lymphomas, through chromosomal translocation, amplification, and transcription hyperactivation. Here, we report that high expression of tribbles homologue 3 (TRIB3) positively correlates with elevated MYC expression in lymphoma specimens; TRIB3 deletion attenuates the initiation and progression of MYC-driven lymphoma by reducing MYC expression. Mechanistically, TRIB3 interacts with MYC to suppress E3 ubiquitin ligase UBE3B-mediated MYC ubiquitination and degradation, which enhances MYC transcriptional activity, causing high proliferation and self-renewal of lymphoma cells. Use of a peptide to disturb the TRIB3-MYC interaction together with doxorubicin reduces the tumor burden in MycEµ mice and patient-derived xenografts. The pathophysiological relevance of UBE3B, TRIB3 and MYC is further demonstrated in human lymphoma. Our study highlights a key mechanism for controlling MYC expression and a potential therapeutic option for treating lymphomas with high TRIB3-MYC expression.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Linfoma no Hodgkin/patología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Represoras/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Autorrenovación de las Células/efectos de los fármacos , Autorrenovación de las Células/genética , Secuenciación de Inmunoprecipitación de Cromatina , Progresión de la Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica , Técnicas de Sustitución del Gen , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Linfoma no Hodgkin/tratamiento farmacológico , Linfoma no Hodgkin/genética , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad , Cultivo Primario de Células , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteasoma/farmacología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteolisis/efectos de los fármacos , Proteínas Proto-Oncogénicas c-myc/antagonistas & inhibidores , RNA-Seq , Proteínas Represoras/genética , Ubiquitinación/efectos de los fármacos , Ubiquitinación/genética , Ensayos Antitumor por Modelo de Xenoinjerto , Adulto Joven
17.
Adv Exp Med Biol ; 1207: 559-567, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32671774

RESUMEN

Chronic Obstructive Pulmonary Disease (COPD) is a classical chronic respiratory disease with the pathological changes involving the bronchi and alveoli. Many of the risk factors of COPD can induce autophagy in different kinds of cells in lung tissue including alveolar epithelial cells, broncho epithelial cells, and fibroblasts. Over-activation of autophagy may cause emphysema by inducing autophagic cell death. However, the bronchitis and fibrosis may be mainly caused by autophagic flux blocking. Thus, understanding the role of autophagy in the pathogenesis of COPD is important for the anti-COPD drug development.


Asunto(s)
Autofagia , Enfermedad Pulmonar Obstructiva Crónica , Bronquios , Humanos , Alveolos Pulmonares , Enfisema Pulmonar
18.
Adv Exp Med Biol ; 1207: 569-579, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32671775

RESUMEN

Pulmonary fibrosis is a progressive chronic inflammatory disease with a poor clinical outcome. Although pirfenidone and nintedanib have been approved by FDA to treat idiopathic pulmonary fibrosis (IPF), these drugs can only slow the progression of IPF. Autophagy plays an important role in the pathogenesis of pulmonary fibrosis. Whether the autophagic flux is blocked or not is directly related to the development direction of pulmonary fibrosis. Defining how autophagy activity regulates the pathogenesis of pulmonary fibrosis will greatly advance the progression of pulmonary fibrosis therapy.


Asunto(s)
Autofagia , Fibrosis Pulmonar , Progresión de la Enfermedad , Humanos , Indoles/farmacología , Indoles/uso terapéutico , Fibrosis Pulmonar/tratamiento farmacológico , Piridonas/farmacología , Piridonas/uso terapéutico
19.
Adv Exp Med Biol ; 1207: 581-584, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32671776

RESUMEN

Asthma is one of the most common diseases of the respiratory system, with typical pathogenesis and pathological changes. The current research shows that autophagy is mainly involved in the pathogenesis of asthma by regulating the body's innate and adaptive immune responses. At the same time, a large number of epidemiological studies have shown that multiple autophagy genes affect the risk of asthma at the level of genetic polymorphism. This chapter will explore the relationship between autophagy and asthma.


Asunto(s)
Asma , Autofagia , Asma/genética , Asma/inmunología , Autofagia/genética , Autofagia/inmunología , Humanos , Polimorfismo Genético
20.
Adv Exp Med Biol ; 1207: 585-597, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32671777

RESUMEN

Besides COPD, pulmonary fibrosis, and asthma, autophagy also participates in the development of many other respiratory diseases. Cystic fibrosis is an innate lung disease. Unlike idiopathic pulmonary fibrosis, cystic fibrosis has unique pathogenesis. Autophagy is an essential biological mechanism for the removal of misfolded proteins and damaged organelles in cells. Abnormal autophagy activity is involved in the pathogenesis of cystic fibrosis. Various studies have demonstrated that abnormalities or impaired autophagy are associated with cardiovascular diseases including pulmonary vascular disease. Autophagy plays a key role in maintaining normal vascular biological functions and vascular cell tissue homeostasis, and also plays an important role in the pathogenesis of various vascular diseases. For example, recent studies have found that autophagy participates in the occurrence and development of pulmonary hypertension. In addition, autophagy plays a central role in both innate and adaptive immune responses in immune cells or other cells with immune function. Thus, autophagy is the important cellular biological mechanism which causes cell fighting against pathogenic microorganisms including viruses, bacteria, and parasites. In this chapter, we discuss the work related to autophagy and other lung diseases.


Asunto(s)
Autofagia , Enfermedades Pulmonares , Fibrosis Quística , Humanos , Hipertensión Pulmonar , Fibrosis Pulmonar Idiopática
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...