Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 927: 172289, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38599405

RESUMEN

Cu, as an essential and toxic element, has gained widespread attention. Both salinity and dissolved organic carbon (DOC) are known to influence Cu toxicity in marine organisms. However, the intricate interplay between these factors and their specific influence on Cu toxicity remains ambiguous. So, this study conducted toxicity tests of Cu on Oryzias melastigma. The experiments involved three salinity levels (10, 20, and 30 ppt) and three DOC levels (0, 1, and 5 mg/L) to comprehensively investigate the underlying mechanisms of toxicity. The complex toxic effects were analyzed by mortality, NKA activity, net Na+ flux and Cu bioaccumulation in O. melastigma. The results indicate that Cu toxicity is notably influenced by both DOC and salinity. Interestingly, the discernible variation in Cu toxicity across different DOC levels diminishes as salinity levels increase. The presence of DOC enhances the impact of salinity on Cu toxicity, especially at higher Cu concentrations. Additionally, Visual MINTEQ was utilized to elucidate the chemical composition of Cu, revealing that DOC had a significant impact on Cu forms. Furthermore, we observed that fluctuations in salinity lead to the inhibition of Na+/K+-ATPase (NKA) activity, subsequently hindering the inflow of Na+. The effects of salinity and DOC on the bioaccumulation of copper were not significant. The influence of salinity on Cu toxicity is mainly through its effect on the osmotic regulation and biophysiology of O. melastigma. Additionally, DOC plays a crucial role in the different forms of Cu. Moreover, DOC-Cu complexes can be utilized by organisms. This study contributes to understanding the mechanism of copper's biological toxicity in intricate marine environments and serves as a valuable reference for developing marine water quality criteria for Cu.


Asunto(s)
Carbono , Cobre , Oryzias , Salinidad , Contaminantes Químicos del Agua , Cobre/toxicidad , Cobre/metabolismo , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/metabolismo , Carbono/metabolismo , Oryzias/metabolismo , Oryzias/fisiología , Bioacumulación
2.
Sci Total Environ ; 927: 172145, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38569974

RESUMEN

Copper (Cu) has sparked widespread global concern as one of the most hazardous metals to aquatic animals. Ocean acidification (OA) and warming (OW) are expected to alter copper's bioavailability based on pH and temperature-sensitive effects; research on their effects on copper on marine organisms is still in its infancy. Therefore, under representative concentration pathways (RCP) 2.6, 4.5, and 8.5, we used the multiple linear regression-water quality criteria (MLR-WQC) method to assess the effects of OA and OW on the ecological risk posed by copper in the Ocean of East China (OEC), which includes the Bohai Sea, Yellow Sea, and East China Sea. The results showed that there was a positive correlation between temperature and copper toxicity, while there was a negative correlation between pH and copper toxicity. The short-term water quality criteria (WQC) values were 1.53, 1.41, 1.30 and 1.13 µg·L-1, while the long-term WQC values were 0.58, 0.48, 0.40 and 0.29 µg·L-1 for 2020, 2099-RCP2.6, 2099-RCP4.5 and 2099-RCP8.5, respectively. Cu in the OEC poses a moderate ecological risk. Under the current copper exposure situation, strict intervention (RCP2.6) only increases the ecological risk of copper exposure by 20 %, and no intervention (RCP8.5) will increase the ecological risk of copper exposure by nearly double. The results indicate that intervention on carbon emissions can slow down the rate at which OA and OW worsen the damage copper poses to marine creatures. This study can provide valuable information for a comprehensive understanding of the combined impacts of climate change and copper on marine organisms.


Asunto(s)
Organismos Acuáticos , Cobre , Monitoreo del Ambiente , Océanos y Mares , Agua de Mar , Contaminantes Químicos del Agua , Cobre/toxicidad , Agua de Mar/química , Organismos Acuáticos/efectos de los fármacos , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad , Concentración de Iones de Hidrógeno , China , Cambio Climático , Calentamiento Global , Animales , Acidificación de los Océanos
3.
Sci Total Environ ; 912: 169587, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38154639

RESUMEN

In recent years, there has been a growing concern about the ecological hazards associated with copper, which has sparked increased interest in copper water quality criteria (WQC). The crucial factors affecting the bioavailability of copper in seawater are now acknowledged to be salinity, dissolved organic carbon (DOC), pH, and temperature. Research on the influence of these four water quality parameters on copper toxicity is rapidly expanding. However, a comprehensive and clear understanding of the relevant mechanisms is currently lacking, hindering the development of a consistent international method to establish the seawater WQC value for copper. As a response to this knowledge gap, this study presents a comprehensive summary with two key focuses: (1) It meticulously analyzes the effects of salinity, DOC, pH, and temperature on copper toxicity to marine organisms. It takes into account the adaptability of different species to salinity, pH and temperature. (2) Additionally, the study delves into the impact of these four water parameters on the acute toxicity values of copper on marine organisms while also reviewing the methods used in establishing the marine WQC value of copper. The study proposed a two-step process: initially zoning based on the difference of salinity and DOC, followed by the establishment of Cu WQC values for different zones during various seasons, considering the impacts of water quality parameters on copper toxicity. By providing fundamental scientific insights, this research not only enhances our understanding and predictive capabilities concerning water quality parameter-dependent Cu toxicity in marine organisms but also contributes to the development of copper seawater WQC values. Ultimately, this valuable information facilitates more informed decision-making in marine water quality management efforts.


Asunto(s)
Cobre , Contaminantes Químicos del Agua , Cobre/toxicidad , Cobre/química , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/química , Materia Orgánica Disuelta , Salinidad , Calidad del Agua , Temperatura , Organismos Acuáticos , Concentración de Iones de Hidrógeno , Carbono/análisis
4.
Sci Total Environ ; 897: 165396, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37437639

RESUMEN

Rivers play a crucial role in global nitrogen (N) cycling, but revealing the driving mechanism of N cycling remains challenging because of the complex natural background gradients. The Qiantang River Basin provides an opportunity to elucidate the driving mechanism due to the complex climatic and hydrological conditions. In this study, the multiple stable isotopes suggested that the conservative mixing of two end members was insufficient to explain the complex behavior of N in both seasons. In-soil processes were the primary N cycling processes that controlled riverine N loading during the wet season, whereas in-stream N biological transformation processes (nitrification and assimilation) were more prevalent during the dry season. The results of MixSIAR revealed that soil sources (soil N and N fertilizer) contributed the most to NO3- during the wet season, accounting for 64.3 %, followed by manure and sewage (31.6 %) and atmospheric precipitation (4.1 %). During the dry season, manure and sewage were the predominant contributors to NO3- (52.1 %), followed by soil N (26.6 %), N fertilizer (18.8 %), and atmospheric precipitation (2.5 %). The relationships between d-excess and δ15N-NH4+ or δ15N-NO3- suggested that both climatic and hydrological conditions would be the driving forces regulating the N transportation and transformation in this basin, leading to the high spatiotemporal heterogeneity in N loading and isotopic compositions. In the wet season, precipitation patterns served as the primary driving forces regulating in-soil biological processes and soil leaching. While the hydrological conditions, especially water residence time, were the crucial factors controlling in-stream biological processes during the dry season. This study elucidates N sources, biotransformation processes, and their driving forces from freshwater to brackish water, which has applications for understanding the N fate from terrene to ocean.

5.
J Environ Manage ; 342: 118155, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37209649

RESUMEN

Due to the continuous influence of human activities, phosphorus pollution in surface water has become a persistent problem that needs to be addressed since phosphorous entails certain risks and degrees of damage to ecosystems and humans. The presence and accumulation of total phosphorus (TP) concentrations in surface waters is the result of a combined effect of many natural and anthropogenic factors, and it is often difficult to intuitively identify the individual importance of each factor in regard to the pollution of the aquatic environment. Considering these issues, this study provides a new methodology to better understand the vulnerability of surface water to TP pollution and the factors that influence TP pollution through the application of two modeling approaches. This includes the boosted regression tree (BRT), an advanced machine learning method, and the traditional comprehensive index method (CIM). Different factors, such as natural variables (including slope, soil texture, normalized difference vegetation index (NDVI), precipitation, and drainage density) and point and nonpoint source anthropogenic factors were included to model the vulnerability of surface water to TP pollution. Two methods were used to produce a vulnerability map of surface water to TP pollution. Pearson correlation analysis was used to validate the two vulnerability assessment methods. The results showed that BRT was more strongly correlated than CIM. In addition, the importance ranking results showed that slope, precipitation, NDVI, decentralized livestock farming and soil texture had a greater influence on TP pollution. Industrial activities, scale livestock farming and population density, which are all contributing sources of pollution, were all relatively less important. The introduced methodology can be used to quickly identify the area most vulnerable to TP pollution and to develop problem specific adaptive policies and measures to reduce the damage from TP pollution.


Asunto(s)
Contaminantes Químicos del Agua , Humanos , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos , Fósforo/análisis , Agua/análisis , Ecosistema , Ríos , Nitrógeno/análisis , Suelo , Algoritmos , China
6.
J Hazard Mater ; 450: 131107, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-36871370

RESUMEN

Cu pollution is a global concern because of its high toxicity and persistence. Few investigations have been conducted on the effects of salinity and dissolved organic carbon (DOC) on Cu toxicity and water quality criteria (WQC). To analyze their impact on the WQC of Cu, non-linear multiple regression (NLMR) models based on salinity and DOC were constructed. The NLMR models demonstrated that when salinity increased, the toxicity values for Cu on fish, mollusca, rotifer, and echinodermata first increased and then declined, whereas those for arthropoda and algae increased. These findings demonstrate that salinity has a substantial impact on Cu toxicity, primarily owing to changes in physiological activity. The original and corrected WQC values in the upper, middle, and outer regions of the Yangtze Estuary were derived based on the species sensitivity distribution method. These values were 1.49, 3.49, 8.86, and 0.87 µg·L-1. An important finding was that lower Cu concentrations in the outer areas posed the highest ecological risk owing to the effects of salinity and DOC. NLMR models are applicable to other coastal areas worldwide. This provides valuable information for the establishment of an accurate and protective estuary for Cu-related WQC.


Asunto(s)
Materia Orgánica Disuelta , Contaminantes Químicos del Agua , Animales , Cobre , Salinidad , Calidad del Agua , Carbono/análisis
7.
Environ Res ; 217: 114957, 2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36457239

RESUMEN

Mercury (Hg) is one of the most toxic pollutants to aquatic organisms. The influence of salinity on Hg toxicity, an important factor restricting the development of global marine aquatic life criteria (ALC), is unclear. Therefore, mercury toxicity data were corrected based on salinity using the aggregate slope method, and the ALC values were derived. Short-term aquatic life criteria (SALC) and long-term aquatic life criteria (LALC) were derived using the species sensitivity distribution method based on Log-logistic, Log-normal, Burr III, Gumbel, and Weibull models. The hazard quotient (HQ) and joint probability curve (JPC) methods were used to evaluate the ecological risk of Hg in the coastal waters of China. The results showed that the SALC and LALC of Hg in the coastal waters of China were 2.21 and 0.54 µg/L. The toxicity data and salinity were positively correlated for Chordate and Arthropoda and negatively correlated for Mollusca. The SALC values increased by approximately 75%, with salinities ranging from 10 to 20 ppt. A slight peak in the SALC at mid-salinities was also observed. The ecological risk assessment of Hg in China's coastal waters showed that attention should be paid to Hg pollution in the Bohai Sea and East China Sea, especially the ecological risk of Hg to crustacean organisms. This study could promote the development of water quality criteria for coastal waters and provide a technical reference for mercury management in the coastal waters of China.


Asunto(s)
Mercurio , Contaminantes Químicos del Agua , Mercurio/análisis , Monitoreo del Ambiente , Salinidad , Calidad del Agua , Organismos Acuáticos , Medición de Riesgo/métodos , China , Contaminantes Químicos del Agua/análisis
8.
Environ Monit Assess ; 192(7): 421, 2020 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-32514793

RESUMEN

Due to unevenly distributed water resources, semi-arid regions are particularly prone to severe water shortage and quality degradation. In this study, based on long-term hydrological database (1935-2015), and the latest available water quality data sets (2011-2016), we analyzed the water crisis and its driving forces in the upper Yongding River watershed, a typical water shortage area in North China. The results showed that human induced excessive water consumption is responsible for the significantly decreased river flow over the past eight decades. Although the capacity of the watershed wastewater treatment has improved, current water quality does not meet the requirements of the national water management goals, because of the excessive nitrogen and CODCr (chemical oxygen demand), which mainly come from the wastewater and feedlots discharge. Due to the decreased river flow, current Yongding River is unable to dilute and assimilate pollutions. The analysis of river pollutant load illustrated that more than 60 % of the nitrogen in the river water system is diverted for reservoir storage, and more than 50 % of the CODCr and TP are diverted for irrigation, thereby, increasing the risk of reservoirs eutrophication and threatening food safety. Besides, the high Cl- (388.2 ± 322.5 mg/L) and SO42- (470.6 ± 357.7 mg/L) imply that the upper river water are not suitable for drinking and irrigation purposes, and a potential risk of salinization if the river flow continues to decrease. We conclude that water resources over extraction and quality degradation are the main driving factors of the Yongding River water crisis.


Asunto(s)
Monitoreo del Ambiente , Ríos , Contaminantes Químicos del Agua , Calidad del Agua , China , Humanos , Nitrógeno/análisis , Movimientos del Agua , Contaminantes Químicos del Agua/análisis , Calidad del Agua/normas
9.
Environ Sci Pollut Res Int ; 27(17): 21590-21603, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32279273

RESUMEN

China is facing great challenges to balance its natural water resource use and eco-environment protection, especially in the north semi-arid region with large water consumption due to the rapid economic growth. This highlights the urgency to use water resource carrying capacity (WRCC) as a measure to maintain the sustainable development of the human and natural water system. Here, we used a coupled model based on the system dynamics and cellular automaton models to assess the WRCC under the critical value of water resource withdrawal ratio (40%) and its sustainability in the Yongding River watershed in Beijing-Tianjin-Hebei region, where the water use highly depends on river flow and nonrenewable groundwater resources. The analytical results showed that the current regional WRCC is severely overloaded due to strong human activities. The predicted results based on four scenarios, i.e., existing development, water saving, industrial restructuring, and integrated development schemes, showed that although the improvement of water saving and water use efficiency has mitigated the regional water shortage, evidenced by the increased WRCC, the water shortage would continue due to the increased water demand. Under the integrated development scenario, it will need at least additional 7.1 × 108 m3 water per year (Beijing: 2.5 × 108 m3, Tianjin: 0.8 × 108 m3, Hebei: 3.8 × 108 m3) via the water transfer project to maintain the sustainability in the next decades. Our research provides recommendations for reasonable water utilization and supplementation under the severe water crisis.


Asunto(s)
Ríos , Recursos Hídricos , Beijing , China , Conservación de los Recursos Naturales , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...