Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
2.
Cell Death Discov ; 9(1): 159, 2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37173310

RESUMEN

N1-Methyladenosine (m1A) is an abundant modification of transcripts, plays important roles in regulating mRNA structure and translation efficiency, and is dynamically regulated under stress. However, the characteristics and functions of mRNA m1A modification in primary neurons and oxygen glucose deprivation/reoxygenation (OGD/R) induced remain unclear. We first constructed a mouse cortical neuron OGD/R model and then used methylated RNA immunoprecipitation (MeRIP) and sequencing technology to demonstrate that m1A modification is abundant in neuron mRNAs and dynamically regulated during OGD/R induction. Our study suggests that Trmt10c, Alkbh3, and Ythdf3 may be m1A-regulating enzymes in neurons during OGD/R induction. The level and pattern of m1A modification change significantly during OGD/R induction, and differential methylation is closely associated with the nervous system. Our findings show that m1A peaks in cortical neurons aggregate at both the 5' and 3' untranslated regions. m1A modification can regulate gene expression, and peaks in different regions have different effects on gene expression. By analysing m1A-seq and RNA-seq data, we show a positive correlation between differentially methylated m1A peaks and gene expression. The correlation was verified by using qRT-PCR and MeRIP-RT-PCR. Moreover, we selected human tissue samples from Parkinson's disease (PD) and Alzheimer's disease (AD) patients from the Gene Expression Comprehensive (GEO) database to analyse the selected differentially expressed genes (DEGs) and differential methylation modification regulatory enzymes, respectively, and found similar differential expression results. We highlight the potential relationship between m1A modification and neuronal apoptosis following OGD/R induction. Furthermore, by mapping mouse cortical neurons and OGD/R-induced modification characteristics, we reveal the important role of m1A modification in OGD/R and gene expression regulation, providing new ideas for research on neurological damage.

3.
Polymers (Basel) ; 15(8)2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-37112050

RESUMEN

Composites that use fly ash and slag as alkali-activated materials instead of cement can overcome the defects and negative effects of alkali-activated cementitious materials prepared with the use of an alkali-activated material. In this study, fly ash and slag were used as raw materials to prepare alkali-activated composite cementitious materials. Experimental studies were carried out on the effects of the slag content, activator concentration and curing age on the compressive strength of the composite cementitious materials. The microstructure was characterized using hydration heat, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), mercury intrusion porosimetry (MIP) and scanning electron microscopy (SEM), and its intrinsic influence mechanism was revealed. The results show that increasing the curing age improves the degree of polymerization reaction and the composite reaches 77~86% of its 7-day compressive strength after 3 days. Except for the composites with 10% and 30% slag content, which reach 33% and 64%, respectively, of their 28-day compressive strength at 7 days, the remaining composites reach more than 95%. This result indicates that the alkali-activated fly ash-slag composite cementitious material has a rapid hydration reaction in the early stage and a slow hydration reaction in the later stage. The amount of slag is the main influencing factor of the compressive strength of alkali-activated cementitious materials. The compressive strength shows a trend of continuous increase when increasing slag content from 10% to 90%, and the maximum compressive strength reaches 80.26 MPa. The increase in the slag content introduces more Ca2+ into the system, which increases the hydration reaction rate, promotes the formation of more hydration products, refines the pore size distribution of the structure, reduces the porosity, and forms a denser microstructure. Therefore, it improves the mechanical properties of the cementitious material. The compressive strength shows a trend of first increasing and then decreasing when the activator concentration increases from 0.20 to 0.40, and the maximum compressive strength is 61.68 MPa (obtained at 0.30). The increase in the activator concentration improves the alkaline environment of the solution, optimizes the level of the hydration reaction, promotes the formation of more hydration products, and makes the microstructure denser. However, an activator concentration that is too large or too small hinders the hydration reaction and affects the strength development of the cementitious material.

4.
Spine (Phila Pa 1976) ; 48(17): E288-E301, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37040465

RESUMEN

STUDY DESIGN: Retrospective epidemiological study. OBJECTIVE: To describe differences based on biological sex in the epidemiology and treatment of the economic burden of traumatic spinal cord injury (TSCI) in China (2013-2018). SUMMARY OF BACKGROUND DATA: Although there have been many regional single-center studies on TSCI in China, there are few reports involving multicenter data, especially those that report on discrepancies related to biological sex. MATERIALS AND METHODS: This study is a nationally representative hospital-based retrospective study. The treatment data of TSCI patients in 30 hospitals in 11 provinces/cities from January 2013 to December 2018 were analyzed. Sociodemographic characteristics, accident and related injury characteristics, treatment methods, and hospital costs were obtained. Regression models were used to evaluate differences in the outcomes of interest based on biological sex and other factors. RESULTS: There were 13,465 individuals with TSCI, with a mean age of 50.0 years, and females (52.2) older than males (49.3). Overall, the average ratio of males to females was 3.1:1, ranging from 3.0:1 in 2013 to 2.8:1 in 2018. The overall proportion of patients with TSCI increased from 2013 to 2018 [annual percentage change (APC)=6.8%, 95% CI, 3.3-10.4] ( P < 0.05). The percent increase in females (APC=8.2%, 95% CI, 5.6-10.8) was greater than that of males (APC=6.3%, 95% CI, 2.1-10.6). Overall, high-level falls mainly affected males (30.8%), and low-level falls mainly occurred in females (36.6%). Females demonstrated a higher frequency of thoracolumbar trauma and less severe neurological impairment. CONCLUSIONS: This study suggests that although the main population of TSCI is male, the average ratio of males to females is decreasing. The frequency of TSCI may be increasing faster in females than in males. Therefore, it is necessary to develop sex-specific public prevention measures. In addition, more medical resources should be devoted to improving the ability of hospitals to perform early surgery.


Asunto(s)
Estrés Financiero , Traumatismos de la Médula Espinal , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Traumatismos de la Médula Espinal/epidemiología , Traumatismos de la Médula Espinal/terapia , Hospitales , China/epidemiología , Incidencia
5.
Elife ; 122023 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-36880874

RESUMEN

Cerebral ischaemia‒reperfusion injury (IRI), during which neurons undergo oxygen-glucose deprivation/reoxygenation (OGD/R), is a notable pathological process in many neurological diseases. N1-methyladenosine (m1A) is an RNA modification that can affect gene expression and RNA stability. The m1A landscape and potential functions of m1A modification in neurons remain poorly understood. We explored RNA (mRNA, lncRNA, and circRNA) m1A modification in normal and OGD/R-treated mouse neurons and the effect of m1A on diverse RNAs. We investigated the m1A landscape in primary neurons, identified m1A-modified RNAs, and found that OGD/R increased the number of m1A RNAs. m1A modification might also affect the regulatory mechanisms of noncoding RNAs, e.g., lncRNA-RNA binding proteins (RBPs) interactions and circRNA translation. We showed that m1A modification mediates the circRNA/lncRNA‒miRNA-mRNA competing endogenous RNA (ceRNA) mechanism and that 3' untranslated region (3'UTR) modification of mRNAs can hinder miRNA-mRNA binding. Three modification patterns were identified, and genes with different patterns had intrinsic mechanisms with potential m1A-regulatory specificity. Systematic analysis of the m1A landscape in normal and OGD/R neurons lays a critical foundation for understanding RNA modification and provides new perspectives and a theoretical basis for treating and developing drugs for OGD/R pathology-related diseases.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Animales , Ratones , ARN Circular/genética , ARN Largo no Codificante/genética , ARN Mensajero/genética , Regiones no Traducidas 3' , Glucosa , Neuronas , Oxígeno
6.
Epigenetics ; 18(1): 2181575, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-36861189

RESUMEN

Cerebral ischaemiareperfusion injury is an important pathological process in nervous system diseases during which neurons undergo oxygenglucose deprivation and reoxygenation (OGD/R) injury. No study has used epitranscriptomics to explore the characteristics and mechanism of injury. N6methyladenosine (m6A) is the most abundant epitranscriptomic RNA modification. However, little is known about m6A modifications in neurons, especially during OGD/R. m6A RNA immunoprecipitation sequencing (MeRIPseq) and RNA-sequencing data for normal and OGD/R-treated neurons were analysed by bioinformatics. MeRIP quantitative real-time polymerase chain reaction was used to determine the m6A modification levels on specific RNAs. We report the m6A modification profiles of the mRNA and circRNA transcriptomes of normal and OGD/R-treated neurons. Expression analysis revealed that the m6A levels did not affect m6A mRNA or m6A circRNA expression. We found crosstalk between m6A mRNAs and m6A circRNAs and identified three patterns of m6A circRNA production in neurons; thus, distinct OGD/R treatments induced the same genes to generate different m6A circRNAs. Additionally, m6A circRNA biogenesis during distinct OGD/R processes was found to be time specific. These results expand our understanding of m6A modifications in normal and OGD/R-treated neurons, providing a reference to explore epigenetic mechanisms and potential treatments for OGD/R-related diseases.


Asunto(s)
Metilación de ADN , ARN Circular , ARN Mensajero/genética , ARN Circular/genética , ARN , Neuronas
7.
Materials (Basel) ; 16(5)2023 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-36903044

RESUMEN

The pH values of pore solutions are of great significance for the durability of concrete, but the influencing factors and mechanisms of geopolymer pore solutions are still unclear and the composition of raw material elements has a great influence on the geological polymerization behavior of geopolymers. Therefore, we prepared geopolymers with different Al/Na and Si/Na molar ratios using metakaolin, and the pH and compressive strength values of the pore solutions were determined using solid-liquid extraction. Finally, the influencing mechanisms of sodium silica on the alkalinity and geological polymerization behavior of geopolymer pore solutions were also analyzed. The results showed that the pH values of the pore solutions decreased with an increase in the Al/Na ratio and increased with an increase in the Si/Na ratio. The compressive strength of the geopolymers first increased and then decreased with an increase in the Al/Na ratio and decreased with an increase in the Si/Na ratio. The exothermic rates of the geopolymers first increased and then slowed down with an increase in the Al/Na ratio, indicating that the reaction levels first increased and then decreased with an increase in the Al/Na ratio. The exothermic rates of the geopolymers gradually slowed down with an increase in the Si/Na ratio, indicating that an increase in the Si/Na ratio reduced the reaction levels. In addition, the results obtained from SEM, MIP, XRD and other test methods were consistent with the pH change laws of geopolymer pore solutions, i.e., the higher the reaction level, the denser the microstructure and the smaller the porosity, whereas the larger the pore size, the smaller the pH value of the pore solution.

8.
Materials (Basel) ; 16(6)2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36984186

RESUMEN

Compared with Portland cement, geopolymers have poor carbonization resistance, which will greatly limit the application their application. To improve the carbonization resistance of geopolymers, firstly, the carbonization behavior of the fly ash-metakaolin-based geopolymer was studied through accelerated carbonization tests. Secondly, different amounts of Ca(OH)2 were introduced into the composite system, and the modification effect of the carbonization resistance of the modified geopolymer was studied. Finally, the modification effect of Ca(OH)2 on the fly ash-metakaolin-based geopolymers was analyzed, and the modification mechanism was explored. It was found that adding Ca(OH)2 to the fly ash-metakaolin-based geopolymer could significantly improve its initial compressive strength, but its strength after carbonization remained basically unchanged; meanwhile, the compressive strength of the terpolymer after carbonization clearly decreased after adding Ca(OH)2. Compared with ordinary Portland cement, the carbonization rate of fly ash-metakaolin-based geopolymer is faster, and the addition of Ca(OH)2 can inhibit the development of its carbonization depth. With increased carbonization age, the alkalinity of the geopolymer decreased, and the addition of Ca(OH)2 inhibited the decrease in the alkalinity of the geopolymer. The addition of Ca(OH)2 improved the microstructure of the geopolymers, the pore structure became denser, and the pore size became smaller size after carbonization. The hydration products of fly ash-metakaolin-based geopolymer are mainly amorphous silicaluminate gel and C-S-H gel, and Ca(OH)2 forms in the hydration products of terpolymer with the incorporation of Ca(OH)2, which is conducive to improving the carbonization resistance. In summary, Ca(OH)2 can play a good role in modifying the carbonization resistance of fly ash-metakaolin-based geopolymers.

9.
Materials (Basel) ; 16(6)2023 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-36984332

RESUMEN

In order to accurately calculate the long-term prestress losses of prestressed tendons, a time-varying model of long-term prestress loss considering the interaction between concrete shrinkage, creep, and the stress relaxation of prestressed tendons was constructed. Then, a method for calculating the long-term prestress losses of concrete structures was developed. A long-term prestress loss test of a prestressed concrete T-beam in a long-term field test environment was carried out. The measured values of long-term prestress losses are compared with the calculated results of JTG 3362-2018, AASHTO LRFD-2007, and the time-varying law model. The results show that the long-term effective tension of the T-beam decreases gradually with the increase in the load holding time. At the beginning of loading, the tensile force changes rapidly and then gradually slows down. The later the tensile age or the higher the initial loading stress level, the smaller the long-term prestress losses of the prestressed tendons. The long-term prestress loss values calculated by JTG 3362-2018, AASHTO LRFD-2007, and the time-varying law model increase with the increase in the load holding time. In the early stage of loading, the rate of change slows down and tends to be stable. The calculated results of JTG 3362-2018 and AASHTO LRFD-2007 are significantly different from the measured values. However, the calculated results of the time-varying law model are in good agreement with the measured values. The average coefficients of variation of the long-term prestress loss calculated by JTG 3362-2018, AASHTO LRFD-2007, and the time-varying law model are 17%, 10%, and 5%, respectively. The time-varying law model of the long-term prestress losses of prestressed tendons is accurate, and the long-term prestress loss of prestressed reinforcement can be predicted effectively.

10.
Comb Chem High Throughput Screen ; 26(11): 1960-1973, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36642874

RESUMEN

BACKGROUND: Injuries to the central nervous system (CNS), such as spinal cord injury (SCI), may devastate families and society. Subacute SCI may majorly impact secondary damage during the transitional period between the acute and subacute phases. A range of CNS illnesses has been linked to changes in the level of protein expression. However, the importance of proteins during the early subacute stage of SCI remains unknown. The role of proteins in the early subacute phase of SCI has not been established yet. METHODS: SCI-induced damage in rats was studied using isobaric tagging for relative and absolute protein quantification (iTRAQ) to identify proteins that differed in expression 3 days after the injury, as well as proteins that did not alter in expression. Differentially expressed proteins (DEPs) were analyzed employing Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis to discover the biological processes, cell components, and molecular functions of the proteins. We also performed Gene Set Enrichment Analysis (GSEA) software BP pathway and KEGG analysis on all proteins to further identify their functions. In addition, the first 15 key nodes of a protein-protein interaction (PPI) system were found. RESULTS: During the early subacute stage of SCI, we identified 176 DEPs in total between the control and damage groups, with 114 (64.77%) being up-regulated and 62 (35.23%) being downregulated. As a result of this study, we discovered the most important cellular components and molecular activities, as well as biological processes and pathways, in the early subacute phase of SCI. The top 15 high-degree core nodes were Alb, Plg, F2, Serpina1, Fgg, Apoa1, Vim, Hpx, Apoe, Agt, Ambp, Pcna, Gc, F12, and Gfap. CONCLUSION: Our study could provide new views on regulating the pathogenesis of proteins in the early subacute phase after SCI, which provides a theoretical basis for exploring more effective therapeutic targets for SCI in the future.


Asunto(s)
Perfilación de la Expresión Génica , Traumatismos de la Médula Espinal , Ratas , Animales , Traumatismos de la Médula Espinal/genética , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patología , Procesamiento Proteico-Postraduccional , alfa 1-Antitripsina/genética , alfa 1-Antitripsina/metabolismo , Ontología de Genes
11.
Materials (Basel) ; 15(21)2022 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-36363221

RESUMEN

The objective of this study is to provide a theoretical method to accurately calculate the stress and strain of steel-reinforced concrete (SRC) columns under long-term axial compression. First, considering the cross-sectional stress redistribution and the influence of each stress increment in the process, the theoretical formula of stress and strain under long-term loading was deduced. Then, the stress and strain calculation program of SRC columns under long-term axial compression was programmed by using object-oriented Visual C++ language. Finally, an experimental study on the long-term deformation performance of SRC axial compression columns was performed to validate the accuracy of the proposed theoretical method. By comparing the calculated results with the experimental results, the influence of steel bars on the long-term stress and strain of SRC columns under axial compression was analyzed and the corresponding long-term stress-strain variation law was studied. Results show that the changing trend of the long-term strain of plain concrete (PC) and SRC with loading time is basically the same, increasing rapidly in the first 270 days and gradually tending to be stable beyond 270 days. After 750 days, the maximum difference in the total strain between the PC columns and SRC columns reaches 26.60%, and the steel bars have a strong influence on the long-term strain of the concrete columns. The errors between the measured values of the two SRC columns, and the calculated results are 2.96% and 5.78%, respectively. Therefore, the derived stress-strain calculation formula and calculation program of SRC columns under long-term loads are accurate and reliable. When the loading time is 750 days, the tensile stress increment of 1.92 MPa and a compressive stress increment of 168.26 MPa are produced in concrete and steel bars. The long-term stress of concrete columns is markedly influenced by steel bars. In the first three years, the stress and strain of the concrete and steel bars develop rapidly and then gradually slow down.

12.
Front Immunol ; 13: 997765, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36275664

RESUMEN

Background: Aging is an influential risk factor for progression of both degenerative and oncological diseases of the bone. Osteosarcoma, considered the most common primary mesenchymal tumor of the bone, is a worldwide disease with poor 5-year survival. This study investigated the role of aging-/senescence-induced genes (ASIGs) in contributing to osteosarcoma diagnosis, prognosis, and therapeutic agent prediction. Methods: Therapeutically Applicable Research to Generate Effective Treatments (TARGET), Gene Expression Omnibus (GEO), and The Cancer Genome Atlas (TCGA) were used to collect relevant gene expression and clinical data of osteosarcoma and paracancerous tissues. Patients were clustered by consensus using prognosis-related ASIGs. ssGSEA, ESTIMATE, and TIMER were used to determine the tumor immune microenvironment (TIME) of subgroups. Functional analysis of differentially expressed genes between subgroups, including Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and gene set variation analyses (GSVAs), was performed to clarify functional status. Prognostic risk models were constructed by univariate Cox regression and least absolute shrinkage and selection operator (LASSO) regression. SCISSOR was used to identify relevant cells in osteosarcoma single-cell data for different risk groups. The effect of immunotherapy was predicted based on TIDE scores and chemotherapy drug sensitivity using CTRP and PRISM. Results: Three molecular subgroups were identified based on prognostic differentially expressed ASIGs. Immunological infiltration levels of the three groups differed significantly. Based on GO and KEGG analyses, differentially expressed genes between the three subgroups mainly relate to immune and aging regulation pathways; GSVA showed substantial variations in multiple Hallmark pathways among the subgroups. The ASIG risk score built based on differentially expressed genes can predict patient survival and immune status. We also developed a nomogram graph to accurately predict prognosis in combination with clinical characteristics. The correlation between the immune activation profile of patients and the risk score is discussed. Through single-cell analysis of the tumor microenvironment, we identified distinct risk-group-associated cells with significant differences in immune signaling pathways. Immunotherapeutic efficacy and chemotherapeutic agent screening were evaluated based on risk score. Conclusion: Aging-related prognostic genes can distinguish osteosarcoma molecular subgroups. Our novel aging-associated gene signature risk score can be used to predict the osteosarcoma immune landscape and prognosis. Moreover, the risk score correlates with the TIME and provides a reference for immunotherapy and chemotherapy in terms of osteosarcoma.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Humanos , Osteosarcoma/genética , Osteosarcoma/diagnóstico , Pronóstico , Ontología de Genes , Neoplasias Óseas/genética , Envejecimiento , Microambiente Tumoral/genética
13.
Gene ; 837: 146689, 2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-35750086

RESUMEN

BACKGROUND: Ischemia-reperfusion injury (IRI) is an important pathophysiological condition that can cause cell injury and large-scale tissue injury in the nervous system. Previous studies have shown that epigenetic regulation may play a role in the pathogenesis of IRI. METHODS: In this study, we isolated mouse cortical neurons and constructed an oxygen-glucose deprivation/reoxygenation (OGD) model to explore the change in DNA methylation and its effect on the expression of corresponding genes. RESULTS: We found that DNA methylation in neurons increased with hypoxia duration and that hypermethylation of numerous promoters and 3'-untranslated regions increased. We performed Gene Ontology enrichment analysis to study gene function and Kyoto Encyclopedia of Genes and Genomes pathway analysis to identify the pathways associated with gene regulation. The results showed that hypermethylation-related genes expressed after OGD were related to physiological pathways such as neuronal projection, ion transport, growth and development, while hypomethylation-related genes were related to pathological pathways such as the external apoptosis signaling pathway, neuronal death regulation, and regulation of oxidative stress. However, the changes in DNA methylation were specific for certain genes and may have been related to OGD-induced neuronal damage. Importantly, we integrated transcription and DNA methylation data to identify several candidate target genes, including hypomethylated Apoe, Pax6, Bmp4, and Ptch1 and hypermethylated Adora2a, Crhr1, Stxbp1, and Tac1. This study further indicated the effect of DNA methylation on gene function in brain IRI from the perspective of epigenetics, and the identified genes may become new targets for achieving neuroprotection in the brain after IRI.


Asunto(s)
Metilación de ADN , Isquemia , Daño por Reperfusión , Regiones no Traducidas 3' , Animales , Apoptosis , Epigénesis Genética , Glucosa/metabolismo , Isquemia/metabolismo , Isquemia/patología , Ratones , Neuronas/metabolismo , Neuronas/patología , Oxígeno/metabolismo , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Transducción de Señal
14.
Arch Osteoporos ; 17(1): 78, 2022 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-35552890

RESUMEN

This study provides a national estimate of the incidence of hospitalizations and assesses the clinical features and outcomes during inpatient admission due to osteoporotic fractures diagnosed by ICD-10-CM/PCS among the elderly in the USA, using the US Nationwide Inpatient Sample, 2016-2018. PURPOSE: To provide a national estimate of the incidence of hospitalizations and assess the clinical features and outcomes during inpatient admission due to osteoporotic fractures (OFs) among the elderly in the USA. METHODS: The study included all inpatients aged 65 years and older who participated in the US Nationwide Inpatient Sample (NIS). We conducted a retrospective analysis of hospitalizations with OFs diagnosed by the International Classification of Diseases, Tenth Revision, Clinical Modification/Procedure Coding System (ICD-10-CM/PCS), using the US NIS, 2016-2018. Trends in epidemiological characteristics and outcomes were calculated by annual percentage change (APC). RESULTS: From 2016 to 2018, there were an estimated 0.16 million hospitalizations for OFs, and the estimated annual incidence rate changed from 995 cases per 1 million persons in 2016 to 1114 cases per 1 million persons in 2018 (APC, 5.8% [95% CI, 0.0 to 12.0]; P > 0.05). Over two-thirds of the patients (68.2%) were age-related osteoporosis with current pathological fracture, and OFs were more likely to occur in vertebra (51.7%) and femur (34.7%). During the hospitalization, the average length of stay (LOS) was 5.83 days, the average cost reached $60,901.04, and the overall mortality was 2.3%. All outcomes including LOS, average cost and mortality did not change significantly in 2016-2018 (all P values for trend were over 0.05). CONCLUSION: Between 2016 and 2018, the incidence rate of OFs remained relatively stable, but the total number of cases was huge. OFs was predominantly age-related, mostly in vertebrae and femurs, with relatively stable cost and mortality during hospitalization.


Asunto(s)
Osteoporosis , Fracturas Osteoporóticas , Anciano , Hospitalización , Humanos , Tiempo de Internación , Osteoporosis/epidemiología , Fracturas Osteoporóticas/epidemiología , Estudios Retrospectivos , Estados Unidos/epidemiología
15.
Front Genet ; 12: 633681, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33613646

RESUMEN

Epigenetic modifications play an important role in central nervous system disorders. As a widespread posttranscriptional RNA modification, the role of the m5C modification in cerebral ischemia-reperfusion injury (IRI) remains poorly defined. Here, we successfully constructed a neuronal oxygen-glucose deprivation/reoxygenation (OGD/R) model and obtained an overview of the transcriptome-wide m5C profiles using RNA-BS-seq. We discovered that the distribution of neuronal m5C modifications was highly conserved, significantly enriched in CG-rich regions and concentrated in the mRNA translation initiation regions. After OGD/R, modification level of m5C increased, whereas the number of methylated mRNA genes decreased. The amount of overlap of m5C sites with the binding sites of most RNA-binding proteins increased significantly, except for that of the RBM3-binding protein. Moreover, hypermethylated genes in neurons were significantly enriched in pathological processes, and the hub hypermethylated genes RPL8 and RPS9 identified by the protein-protein interaction network were significantly related to cerebral injury. Furthermore, the upregulated transcripts with hypermethylated modification were enriched in the processes involved in response to stress and regulation of apoptosis, and these processes were not identified in hypomethylated transcripts. In final, we verified that OGD/R induced neuronal apoptosis in vitro using TUNEL and western blot assays. Our study identified novel m5C mRNAs associated with ischemia-reperfusion in neurons, providing valuable perspectives for future studies on the role of the RNA methylation in cerebral IRI.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...