Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Neuroinflammation ; 16(1): 101, 2019 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-31092253

RESUMEN

BACKGROUND: Blood-brain barrier (BBB) disruption and neuroinflammation are considered key mechanisms of pathogenic Escherichia coli invasion of the brain. However, the specific molecules involved in meningitic E. coli-induced BBB breakdown and neuroinflammatory response remain unclear. Our previous RNA-sequencing data from human brain microvascular endothelial cells (hBMECs) revealed two important host factors: platelet-derived growth factor-B (PDGF-B) and intercellular adhesion molecule-1 (ICAM-1), which were significantly upregulated in hBMECs after meningitic E. coli infection. Whether and how PDGF-B and ICAM-1 contribute to the development of E. coli meningitis are still unclear. METHODS: The western blot, real-time PCR, enzyme-linked immunosorbent assay, immunohistochemistry, and immunofluorescence were applied to verify the significant induction of PDGF-B and ICAM-1 by meningitic E. coli in vivo and in vitro. Evan's blue assay and electric cell-substrate impedance sensing assay were combined to identify the effects of PDGF-B on BBB permeability. The CRISPR/Cas9 technology, cell-cell adhesion assay, and electrochemiluminescence assay were used to investigate the role of ICAM-1 in neuroinflammation subversion. RESULTS: We verified the significant induction of PDGF-B and ICAM-1 by meningitic E. coli in mouse as well as monolayer hBMECs models. Functionally, we showed that the increase of PDGF-B may directly enhance the BBB permeability by decreasing the expression of tight junction proteins, and the upregulation of ICAM-1 contributed to neutrophils or monocytes recruitment as well as neuroinflammation subversion in response to meningitic E. coli infection. CONCLUSIONS: Our findings demonstrated the roles of PDGF-B and ICAM-1 in mediating bacterial-induced BBB damage as well as neuroinflammation, providing new concepts and potential targets for future prevention and treatment of bacterial meningitis.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Infecciones por Escherichia coli/metabolismo , Mediadores de Inflamación/metabolismo , Molécula 1 de Adhesión Intercelular/biosíntesis , Linfocinas/biosíntesis , Meningitis Bacterianas/metabolismo , Factor de Crecimiento Derivado de Plaquetas/biosíntesis , Animales , Barrera Hematoencefálica/microbiología , Barrera Hematoencefálica/patología , Células Cultivadas , Escherichia coli , Infecciones por Escherichia coli/patología , Femenino , Meningitis Bacterianas/patología , Ratones , Uniones Estrechas/metabolismo , Uniones Estrechas/microbiología , Regulación hacia Arriba/fisiología
2.
J Neuroinflammation ; 15(1): 291, 2018 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-30340642

RESUMEN

BACKGROUND: Bacterial meningitis remains a big threat to the integrity of the central nervous system (CNS), despite the advancements in antimicrobial reagents. Escherichia coli is a bacterial pathogen that can disrupt the CNS function, especially in neonates. E. coli meningitis occurs after bacteria invade the brain microvascular endothelial cells (BMECs) that form a direct and essential barrier restricting the entry of circulating microbes and toxins to the brain. Previous studies have reported on several cellular proteins that function during meningitic E. coli infections; however, more comprehensive investigations to elucidate the potential targets involved in E. coli meningitis are essential to better understand this disease and discover new treatments for it. METHODS: The isobaric tags for relative and absolute quantification (iTRAQ) approach coupled with LC-MS/MS were applied to compare and characterize the different proteomic profiles of BMECs in response to meningitic or non-meningitic E. coli strains. KEGG and gene ontology annotations, ingenuity pathways analysis, and functional experiments were combined to identify the key host molecules involved in the meningitic E. coli-induced tight junction breakdown and neuroinflammatory responses. RESULTS: A total of 13 cellular proteins were found to be differentially expressed by meningitic E. coli strains PCN033 and RS218, including one that was also affected by HB101, a non-meningitic E. coli strain. Through bioinformatics analysis, we identified the macrophage migration inhibitory factor (MIF), granzyme A, NF-κB signaling, and mitogen-activated protein kinase (MAPK) pathways as being biologically involved in the meningitic E. coli-induced tight junction breakdown and neuroinflammation. Functionally, we showed that MIF facilitated meningitic E. coli-induced production of cytokines and chemokines and also helped to disrupt the blood-brain barrier by decreasing the expression of tight junction proteins like ZO-1, occludin. Moreover, we demonstrated the significant activation of NF-κB and MAPK signaling in BMECs in response to meningitic E. coli strains, which dominantly determined the generation of the proinflammatory cytokines including IL-6, IL-8, TNF-α, and IL-1ß. CONCLUSIONS: Our work identified 12 host cellular targets that are affected by meningitic E. coli strains and revealed MIF to be an important contributor to meningitic E. coli-induced cytokine production and tight junction disruption, and also the NF-κB and MAPK signaling pathways that are mainly involved in the infection-induced cytokines production. Characterization of these distinct proteins and pathways in BMECs will facilitate further elucidation of meningitis-causing mechanisms in humans and animals, thereby enabling the development of novel preventative and therapeutic strategies against infection with meningitic E. coli.


Asunto(s)
Encéfalo/citología , Células Endoteliales/metabolismo , Células Endoteliales/microbiología , Regulación Bacteriana de la Expresión Génica/fisiología , Proteómica/métodos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Células Cultivadas , Biología Computacional , Citocinas/genética , Citocinas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Redes Reguladoras de Genes , Humanos , Oxidorreductasas Intramoleculares/química , Oxidorreductasas Intramoleculares/farmacología , Factores Inhibidores de la Migración de Macrófagos/química , Factores Inhibidores de la Migración de Macrófagos/farmacología , Meningitis por Escherichia coli/metabolismo , Meningitis por Escherichia coli/patología , FN-kappa B/metabolismo , Transducción de Señal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...