Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 689: 149217, 2023 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-37972446

RESUMEN

The incidence and mortality rates of colorectal cancer (CRC) have significantly increased in recent years. It has been shown that early diagnosis of CRC improves the five-year survival of patients compared to late diagnosis, as patients with stage I disease have a five-year survival rate as high as 90 %. Through bioinformatics analysis, we identified Kallikrein 10 (KLK10), a member of the Kallikrein family, as a reliable predictor of CRC progression, particularly in patients with early-stage CRC. Furthermore, single-cell analysis revealed that KLK10 was highly expressed in tumor and partial immune cells. Analysis of the biological functions of KLK10 using the Kyoto encyclopedia of genes and genomes and gene ontology indicated that KLK10 plays a role in the proliferation and differentiation of cancer cells, along with the maintenance of tumor function and immune regulation, explicitly by T cells and macrophages. EdU cell proliferation staining, plate clone formation assay, and cell scratch assay demonstrated that KLK10 inhibition by siRNA affected the proliferation and migration of CRC cells. Cell cycle detection by flow cytometry demonstrated that KLK10 inhibition led to cell cycle arrest in the G1 phase. In addition, the proportion of M1 and M2 macrophages in 45 tumor specimens was analyzed by immunohistochemistry, the proportion of CD4+ T cells and CD8+ T cells in plasma was identified by flow cytometry, and their correlation with KLK10 was analyzed. The effects of KLK10 on T cells and macrophages were verified in independent cell experiments. The results revealed that KLK10 also activates CD4+ T cells, mediating M2-type macrophage polarization.


Asunto(s)
Linfocitos T CD8-positivos , Neoplasias Colorrectales , Humanos , Linfocitos T CD8-positivos/metabolismo , Neoplasias Colorrectales/patología , Calicreínas/genética , Calicreínas/metabolismo
2.
J Immunol Res ; 2022: 2619781, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35178457

RESUMEN

Hepatocellular carcinoma (HCC) is an often-fatal malignant tumor with high lethality. Despite advances and significant efficacy in monotherapy, cancer therapy continues to pose several challenges. Novel combination regimens are an emerging strategy for anti-HCC and have demonstrated to be effective. Here, we propose a potential combination for HCC treatment named arsenic trioxide cooperate cryptotanshinone (ACCS). A remarkable synergistic therapeutic effect has been achieved compared with drugs alone in both in vivo and in vitro experiments. Mechanism study indicated that ACCS exerts its therapeutic actions by regulating macrophage-related immunity and glycolysis. ACCS potentiates the polarization of M1 macrophages and elevates the proportion of M1/M2 to remodel tumor immunity. Further molecular mechanism study revealed that ACCS intensifies the glucose utilization and glycolysis in the macrophage by increasing the phosphorylation of AMPK to activating the AMPK singling pathway. In conclusion, ACCS is a highly potential combination regimen for HCC treatment. The therapeutic potential of ACCS as a candidate option for anticancer drugs in restoring the balance of immunity and metabolism deserves further investigation.


Asunto(s)
Antineoplásicos/uso terapéutico , Trióxido de Arsénico/uso terapéutico , Carcinoma Hepatocelular/tratamiento farmacológico , Medicamentos Herbarios Chinos/uso terapéutico , Neoplasias Hepáticas/tratamiento farmacológico , Macrófagos/metabolismo , Fenantrenos/uso terapéutico , Animales , Diferenciación Celular , Citocinas/metabolismo , Combinación de Medicamentos , Sinergismo Farmacológico , Glucólisis , Humanos , Inmunidad Innata , Inmunomodulación , Activación de Macrófagos , Ratones , Ratones Endogámicos BALB C , Células TH1/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...