Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Small ; 20(15): e2307378, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38009801

RESUMEN

The high-current-density Zn-air battery shows big prospects in next-generation energy technologies, while sluggish O2 reaction and diffusion kinetics barricade the applications. Herein, the sequential assembly is innovatively demonstrated for hierarchically mesoporous molybdenum carbides/carbon microspheres with a tunable thickness of mesoporous carbon layers (Meso-Mo2C/C-x, where x represents the thickness). The optimum Meso-Mo2C/C-14 composites (≈2 µm in diameter) are composed of mesoporous nanosheets (≈38 nm in thickness), which possess bilateral mesoporous carbon layers (≈14 nm in thickness), inner Mo2C/C layers (≈8 nm in thickness) with orthorhombic Mo2C nanoparticles (≈2 nm in diameter), a high surface area of ≈426 m2 g-1, and open mesopores (≈6.9 nm in size). Experiments and calculations corroborate the hierarchically mesoporous Mo2C/C can enhance hydrophilicity for supplying sufficient O2, accelerate oxygen reduction kinetics by highly-active Mo2C and N-doped carbon sites, and facilitate O2 diffusion kinetics over hierarchically mesopores. Therefore, Meso-Mo2C/C-14 outputs a high half-wave potential (0.88 V vs RHE) with a low Tafel slope (51 mV dec-1) for oxygen reduction. More significantly, the Zn-air battery delivers an ultrahigh power density (272 mW cm-2), and an unprecedented 100 h stability at a high-current-density condition (100 mA cm-2), which is one of the best performances.

2.
J Am Chem Soc ; 146(2): 1701-1709, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38157406

RESUMEN

Mesoporous materials with crystalline frameworks have been widely explored in many fields due to their unique structure and crystalline feature, but accurate manipulations over crystalline scaffolds, mainly composed of uncontrolled polymorphs, are still lacking. Herein, we explored a controlled crystallization-driven monomicelle assembly approach to construct a type of uniform mesoporous TiO2 particles with atomically aligned single-crystal frameworks. The resultant mesoporous TiO2 single-crystal particles possess an angular shape ∼80 nm in diameter, good mesoporosity (a high surface area of 112 m2 g-1 and a mean pore size at 8.3 nm), and highly oriented anatase frameworks. By adjusting the evaporation rate during assembly, such a facile solution-processed strategy further enables the regulation of the particle size and mesopore size without the destruction of the oriented crystallites. Such a combination of ordered mesoporosity and crystalline orientation provides both effective mass and charge transportation, leading to a significant increase in the hydrogen generation rate. A maximum hydrogen evolution rate of 12.5 mmol g-1 h-1 can be realized, along with great stability under solar light. Our study is envisaged to extend the possibility of mesoporous single crystal growth to a range of functional ceramics and semiconductors toward advanced applications.

3.
JACS Au ; 3(4): 1141-1150, 2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37124304

RESUMEN

Mesoporous materials with crystalline frameworks have been acknowledged as very attractive materials in various applications. Nevertheless, due to the cracking issue during crystallization and incompatible hydrolysis and assembly, the precise control for crystalline mesoscale membranes is quite infertile. Herein, we presented an ingenious stepwise monomicelle assembly route for the syntheses of highly ordered mesoporous crystalline TiO2 membranes with delicately controlled mesophase, mesoporosity, and thickness. Such a process involves the preparation of monomicelle hydrogels and follows self-assembly by stepwise solvent evaporation, which enables the sensitive hydrolysis of TiO2 oligomers and dilatory micelle assembly to be united. In consequence, the fabricated mesoporous TiO2 membranes exhibit a broad flexibility, including tunable ordered mesophases (worm-like, hexagonal p6mm to body-centered cubic Im3̅m), controlled mesopore sizes (3.0-8.0 nm), and anatase grain sizes (2.3-8.4 nm). Besides, such mesostructured crystalline TiO2 membranes can be extended to diverse substrates (Ti, Ag, Si, FTO) with tailored thickness. The great mesoporosity of the in situ fabricated mesoscopic membranes also affords excellent pseudocapacitive behavior for sodium ion storage. This study underscores a novel pathway for balancing the interaction of precursors and micelles, which could have implications for synthesizing crystalline mesostructures in higher controllability.

4.
Small ; 19(28): e2301203, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37010007

RESUMEN

Hard carbons (HCs) with high sloping capacity are considered as the leading candidate anode for sodium-ion batteries (SIBs); nevertheless, achieving basically complete slope-dominated behavior with high rate capability is still a big challenge. Herein, the synthesis of mesoporous carbon nanospheres with highly disordered graphitic domains and MoC nanodots modification via a surface stretching strategy is reported. The MoOx surface coordination layer inhibits the graphitization process at high temperature, thus creating short and wide graphite domains. Meanwhile, the in situ formed MoC nanodots can greatly promote the conductivity of highly disordered carbon. Consequently, MoC@MCNs exhibit an outstanding rate capacity (125 mAh g-1 at 50 A g-1 ). The "adsorption-filling" mechanism combined with excellent kinetics is also studied based on the short-range graphitic domains to reveal the enhanced slope-dominated capacity. The insight in this work encourages the design of HC anodes with dominated slope capacity toward high-performance SIBs.

5.
Nat Commun ; 14(1): 1211, 2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36869046

RESUMEN

As an important branch of anisotropic nanohybrids (ANHs) with multiple surfaces and functions, the porous ANHs (p-ANHs) have attracted extensive attentions because of the unique characteristics of high surface area, tunable pore structures and controllable framework compositions, etc. However, due to the large surface-chemistry and lattice mismatches between the crystalline and amorphous porous nanomaterials, the site-specific anisotropic assembly of amorphous subunits on crystalline host is challenging. Here, we report a selective occupation strategy to achieve site-specific anisotropic growth of amorphous mesoporous subunits on crystalline metal-organic framework (MOF). The amorphous polydopamine (mPDA) building blocks can be controllably grown on the {100} (type 1) or {110} (type 2) facets of crystalline ZIF-8 to form the binary super-structured p-ANHs. Based on the secondary epitaxial growth of tertiary MOF building blocks on type 1 and 2 nanostructures, the ternary p-ANHs with controllable compositions and architectures are also rationally synthesized (type 3 and 4). These intricate and unprecedented superstructures provide a good platform for the construction of nanocomposites with multiple functionalities and understanding of the structure-property-function relationships.

6.
Molecules ; 28(3)2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36770675

RESUMEN

Linaclotide is a 14-amino acid residue peptide approved by the FDA for the treatment of irritable bowel syndrome with constipation (IBS-C), which activates guanylate cyclase C to accelerate intestinal transit. Here we show a new method for the synthesis of linaclotide through the completely selective formation of three disulfide bonds in satisfactory overall yields via mild oxidation reactions of the solid phase and liquid phase, using 4-methoxytrityl (Mmt), diphenylmethyl (Dpm) and 2-nitrobenzyl (O-NBn) protecting groups of cysteine as substrate, respectively.


Asunto(s)
Estreñimiento , Síndrome del Colon Irritable , Humanos , Cisteína , Síndrome del Colon Irritable/tratamiento farmacológico , Péptidos , Resultado del Tratamiento
7.
J Am Chem Soc ; 144(26): 11767-11777, 2022 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-35731994

RESUMEN

Constructing hierarchical three-dimensional (3D) mesostructures with unique pore structure, controllable morphology, highly accessible surface area, and appealing functionality remains a great challenge in materials science. Here, we report a monomicelle interface confined assembly approach to fabricate an unprecedented type of 3D mesoporous N-doped carbon superstructure for the first time. In this hierarchical structure, a large hollow locates in the center (∼300 nm in diameter), and an ultrathin monolayer of spherical mesopores (∼22 nm) uniformly distributes on the hollow shells. Meanwhile, a small hole (4.0-4.5 nm) is also created on the interior surface of each small spherical mesopore, enabling the superstructure to be totally interconnected. Vitally, such interconnected porous supraparticles exhibit ultrahigh accessible surface area (685 m2 g-1) and good underwater aerophilicity due to the abundant spherical mesopores. Additionally, the number (70-150) of spherical mesopores, particle size (22 and 42 nm), and shell thickness (4.0-26 nm) of the supraparticles can all be accurately manipulated. Besides this spherical morphology, other configurations involving 3D hollow nanovesicles and 2D nanosheets were also obtained. Finally, we manifest the mesoporous carbon superstructure as an advanced electrocatalytic material with a half-wave potential of 0.82 V (vs RHE), equivalent to the value of the commercial Pt/C electrode, and notable durability for oxygen reduction reaction (ORR).

8.
J Am Chem Soc ; 143(35): 14097-14105, 2021 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-34379403

RESUMEN

Surface redox pseudocapacitance, which enables short charging times and high power delivery, is very attractive in a wide range of sites. To achieve maximized specific capacity, nanostructuring of active materials with high surface area is indispensable. However, one key limitation for capacitive materials is their low volumetric capacity due to the low tap density of nanomaterials. Here, we present a promising mesoscale TiO2 structure with precisely controlled mesoporous frameworks as a high-density pseudocapacitive model system. The dense-packed mesoscopic TiO2 in micrometer size offers a high accessible surface area (124 m2 g-1) and radially aligned mesopore channels, but high tap density (1.7 g cm-3) that is much higher than TiO2 nanoparticles (0.47 g cm-3). As a pseudocapacitive sodium-ion storage anode, the precisely designed mesoscopic TiO2 model achieved maximized gravimetric capacity (240 mAh g-1) and volumetric capacity (350 mAh cm-3) at 0.025 A g-1. Such a designed pseudocapacitive mesostructure further realized a commercially comparable areal capacity (2.1 mAh cm-2) at a high mass loading of 9.47 mg cm-2. This mesostructured electrode that enables fast sodiation in dense nanostructures has implications for high-power applications, fast-charging devices, and pseudocapacitive electrode design.

9.
Nano Lett ; 21(14): 6071-6079, 2021 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-34269590

RESUMEN

Streamlined architectures with a low fluid-resistance coefficient have been receiving great attention in various fields. However, it is still a great challenge to synthesize streamlined architecture with tunable surface curvature at the nanoscale. Herein, we report a facile interfacial dynamic migration strategy for the synthesis of streamlined mesoporous nanotadpoles with varied architectures. These tadpole-like nanoparticles possess a big streamlined head and a slender tail, which exhibit large inner cavities (75-170 nm), high surface areas (424-488 m2 g-1), and uniform mesopore sizes (2.4-3.2 nm). The head curvature of the streamlined mesoporous nanoparticles can be well-tuned from ∼2.96 × 10-2 to ∼5.56 × 10-2 nm-1, and the tail length can also be regulated from ∼30 to ∼650 nm. By selectively loading the Fe3O4 catalyst in the cavity of the streamlined silica nanotadpoles, the H2O2-driven mesoporous nanomotors were designed. The mesoporous nanomotors with optimized structural parameters exhibit outstanding directionality and a diffusion coefficient of 8.15 µm2 s-1.


Asunto(s)
Nanopartículas , Dióxido de Silicio , Catálisis , Peróxido de Hidrógeno , Porosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...