Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
CNS Neurosci Ther ; 30(2): e14345, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37424152

RESUMEN

OBJECTIVE: Cognitive deficit is common in patients with temporal lobe epilepsy (TLE). Here, we aimed to investigate the modular architecture of functional networks associated with distinct cognitive states in TLE patients together with the role of the thalamus in modular networks. METHODS: Resting-state functional magnetic resonance imaging scans were acquired from 53 TLE patients and 37 matched healthy controls. All patients received the Montreal Cognitive Assessment test and accordingly were divided into TLE patients with normal cognition (TLE-CN, n = 35) and TLE patients with cognitive impairment (TLE-CI, n = 18) groups. The modular properties of functional networks were calculated and compared including global modularity Q, modular segregation index, intramodular connections, and intermodular connections. Thalamic subdivisions corresponding to the modular networks were generated by applying a 'winner-take-all' strategy before analyzing the modular properties (participation coefficient and within-module degree z-score) of each thalamic subdivision to assess the contribution of the thalamus to modular functional networks. Relationships between network properties and cognitive performance were then further explored. RESULTS: Both TLE-CN and TLE-CI patients showed lower global modularity, as well as lower modular segregation index values for the ventral attention network and the default mode network. However, different patterns of intramodular and intermodular connections existed for different cognitive states. In addition, both TLE-CN and TLE-CI patients exhibited anomalous modular properties of functional thalamic subdivisions, with TLE-CI patients presenting a broader range of abnormalities. Cognitive performance in TLE-CI patients was not related to the modular properties of functional network but rather to the modular properties of functional thalamic subdivisions. CONCLUSIONS: The thalamus plays a prominent role in modular networks and potentially represents a key neural mechanism underlying cognitive impairment in TLE.


Asunto(s)
Trastornos del Conocimiento , Disfunción Cognitiva , Epilepsia del Lóbulo Temporal , Humanos , Epilepsia del Lóbulo Temporal/complicaciones , Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Epilepsia del Lóbulo Temporal/patología , Tálamo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Disfunción Cognitiva/patología , Trastornos del Conocimiento/patología
2.
Front Neurol ; 13: 892242, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35959389

RESUMEN

Background: Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis is an autoimmune disease with typical clinical features. Whether and how cerebral gray matter structural damage inherent to the disorder affects cognitive function in patients is still unclear. Therefore, this study aimed to explore the changes in cerebral gray matter volume and whether these alterations contribute to cognitive impairment and mood disorders. Methods: Forty patients with anti-NMDAR encephalitis and forty healthy controls (HCs) matched for gender, age, and education were recruited. All participants underwent attention network tests (ANT), neuropsychological tests and magnetic resonance imaging (MRI). Voxel-based morphological analysis (VBM) and correlation analysis was performed on all participants. Finally, according to the course of disease, patients were divided into two groups: NMDARE_SD (short duration; course ≤ 2 years since diagnosis) and NMDARE_LD (long duration; course >2 years since diagnosis), to evaluate gray matter volume changes that differ as a function of disease course. Results: Compared to HCs, patients with anti-NMDAR encephalitis showed decreased executive control ability and lower MoCA score, while increased anxiety and depression as reflected by HAMA and HAMD24 scores (all P < 0.05). In VBM analysis, patients showed decreased gray matter volume in bilateral thalamus, left medial prefrontal cortex (mPFC_L), left superior temporal gyrus (STG_L), and left rectus gyrus. In the analysis stratified by disease course, the NMDARE_LD group exhibited decreased gray matter volume in the left precuneus and right posterior cerebellar lobe compared to the NMDARE_SD group. Conclusions: Patients with anti-NMDAR encephalitis have cognitive, executive, and emotional dysfunction, and the sites of gray matter atrophy are concentrated in the thalamus, frontal lobe, and temporal lobe. These abnormalities may be involved in the process of cognitive and affective dysfunction.Patients with different courses of anti-NMDAR encephalitis have different brain atrophy sites. These results may help to clarify the contradiction between clinical and imaging manifestations of anti NMDAR encephalitis, which is worthy of further longitudinal studies.

3.
Front Neurol ; 13: 822253, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35837228

RESUMEN

Objectives: Ictal panic (IP) can be observed occasionally in patients with temporal lobe epilepsy (TLE). Such descriptions can be found in previous studies, but the mechanism is still not clear and often confused with panic attacks in patients with panic disorder (PD). We try to use imaging methods (resting-state functional magnetic resonance imaging, rs-fMRI) to study the mechanism of this psychiatric comorbidity in patients with TLE. Methods: Forty right-onset TLE patients were observed, including 28 patients with TLE but without IP and 12 patients with TLEIP along with 30 gender-age matched healthy controls were included. We collected clinical/physiological/neuropsychological and rs-fMRI data. Degree centrality (DC) and functional connectivity (FC) were calculated. For the DC and FC values, analysis of covariance (ANCOVA) was used to find different areas and t-tests were used to compare differences between the TLEIP, TLE without IP, and healthy control(HC)groups. The relationship between brain abnormalities and patient characteristics was explored by correlation analyses. Results: No significant differences in gender and age were found among the three groups, and no significant differences in education level, Montreal Cognitive Assessment (MOCA), Hamilton Depressive Scale (HAMD), Hamilton Anxiety Scale (HAMA), and epilepsy duration (years) between the TLEIP and TLE without IP groups. In addition to fear, other symptoms were observed, including nausea, palpitations, rising epigastric sensation, and dyspnea. There was no correlation between the duration of IP and HAMA. Moreover, all IP durations were <2 min. Compared to the HCs and TLE without IP group, the DC value of the TLEIP group in the left middle temporal gyrus (LMTG) was significantly increased. Compared to the HCs, FC could be found between the LMTG and left inferior temporal gyrus (LITG) in the TLEIP group. In addition, there was FC between the LMTG and cerebellum in the TLEIP group. The difference in the magnitude of FC between the TLEIP vs. HC group was greater than the difference between the TLE vs. HC group. Conclusions: This study describes brain abnormalities in patients with TLEIP. These results will help to preliminarily understand the mechanism of ictal panic and abnormal functional connection in patients with TLE, and further explore the neuroimaging mechanism of ictal panic in patients with TLE.

4.
Front Psychiatry ; 13: 888150, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35722568

RESUMEN

Purpose: Previous research has shown that subcortical brain regions are related to vigilance in temporal lobe epilepsy (TLE). However, it is unknown whether alterations in the function and structure of basal forebrain (BF) subregions are associated with vigilance impairment in distinct kinds of TLE. We aimed to investigate changes in the structure and function BF subregions in TLE patients with and without focal to bilateral tonic-clonic seizures (FBTCS) and associated clinical features. Methods: A total of 50 TLE patients (25 without and 25 with FBTCS) and 25 healthy controls (HCs) were enrolled in this study. The structural and functional alterations of BF subregions in TLE were investigated using voxel-based morphometry (VBM) and resting-state functional connectivity (rsFC) analysis. Correlation analyses were utilized to investigate correlations between substantially altered imaging characteristics and clinical data from patients. Results: FBTCS patients had a lower rsFC between Ch1-3 and the bilateral striatum as well as the left cerebellum posterior lobe than non-FBTCS patients. In comparison to non-FBTCS patients, the rsFC between Ch4 and the bilateral amygdala was also lower in FBTCS patients. Compared to HCs, the TLE patients had reduced rsFC between the BF subregions and the cerebellum, striatum, default mode network, frontal lobe, and occipital lobes. In the FBTCS group, the rsFC between the left Ch1-3 and striatum was positive correlated with the vigilance measures. In the non-FBTCS group, the rsFC between the left Ch4 and striatum was significantly negative correlated with the alertness measure. Conclusion: These results extend current understanding of the pathophysiology of impaired vigilance in TLE and imply that the BF subregions may serve as critical nodes for developing and categorizing TLE biomarkers.

5.
Epilepsy Behav ; 129: 108490, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35180570

RESUMEN

OBJECTIVES: Temporal lobe epilepsy (TLE) is one of the most common focal epilepsies. Some patients with TLE have ictal panic (IP), which is often confused with panic attack (PA) in panic disorder (PD). Previous studies have described temporal lobe epilepsy with ictal panic (TLEIP), but the specific mechanisms remain unclear. Here, we used resting-state functional magnetic resonance imaging (rs-fMRI) to investigate local brain abnormalities in patients with TLEIP and tried to find neural markers to explore the mechanism of IP in patients with TLE. METHODS: A total of 40 patients with TLE, including 28 patients with TLE and 12 patients with TLEIP along with 30 age- and gender-matched healthy controls were included. We collected clinical/physiological/neuropsychological and rs-fMRI data. Fractional amplitude of low-frequency fluctuation (fALFF), regional homogeneity (ReHo), and degree centrality (DC) were calculated. ANOVA was used to find different areas and t-tests used to compare differences among fALFF, ReHo, and DC. Correlation analyses explored the relationship between local brain abnormalities and patient characteristics. RESULTS: No significant differences in age and gender were found among the three groups, nor were there differences in education level, Montreal Cognitive Assessment (MOCA) and Hamilton Anxiety Scale (HAMA) between the TLEIP and TLE groups. All the onset sites of patients with TLEIP were on the right. In addition to fear, other symptoms observed included nausea, palpitations, rising epigastric sensation, and dyspnea. There were no correlations between duration of IP and HAMA (p = 0.659). Moreover, all IP durations were <2 min and most <1 min. Compared to the HCs group, the ReHo value of the TLEIP group in the right middle frontal gyrus was significantly decreased (GRF correction, two-tailed, voxel level P < 0.005, cluster level P < 0.05). Compared to the HCs and TLE groups, the DC value of the TLEIP group in the left middle temporal gyrus (MTG) was significantly increased (GRF correction, two-tailed, voxel level P < 0.005, cluster level P < 0.05). No regions showed any significant fALFF difference between HCs and TLE groups (GRF correction, two-tailed, voxel level P < 0.005, cluster level P < 0.05). CONCLUSIONS: This research describes local brain abnormalities in patients with TLE presenting as IP. These results will be preliminarily conducive to understand the seizure mechanism of IP in patients with TLE, find out the MRI neural markers, and to further explore the neurophysiological mechanisms of IP in patients with TLE.


Asunto(s)
Epilepsia del Lóbulo Temporal , Imagen por Resonancia Magnética , Biomarcadores , Encéfalo/diagnóstico por imagen , Mapeo Encefálico/métodos , Epilepsia del Lóbulo Temporal/complicaciones , Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética/métodos
6.
BMC Neurol ; 22(1): 14, 2022 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-34996377

RESUMEN

BACKGROUND: Temporal lobe epilepsy (TLE) is commonly refractory. Epilepsy surgery is an effective treatment strategy for refractory epilepsy, but patients with a history of focal to bilateral tonic-clonic seizures (FBTCS) have poor outcomes. Previous network studies on epilepsy have found that TLE and idiopathic generalized epilepsy with generalized tonic-clonic seizures (IGE-GTCS) showed altered global and nodal topological properties. Alertness deficits also were found in TLE. However, FBTCS is a common type of seizure in TLE, and the implications for alertness as well as the topological rearrangements associated with this seizure type are not well understood. METHODS: We obtained rs-fMRI data and collected the neuropsychological assessment data from 21 TLE patients with FBTCS (TLE- FBTCS), 18 TLE patients without FBTCS (TLE-non- FBTCS) and 22 controls, and constructed their respective functional brain networks. The topological properties were analyzed using the graph theoretical approach and correlations between altered topological properties and alertness were analyzed. RESULTS: We found that TLE-FBTCS patients showed more serious impairment in alertness effect, intrinsic alertness and phasic alertness than the patients with TLE-non-FBTCS. They also showed significantly higher small-worldness, normalized clustering coefficient (γ) and a trend of higher global network efficiency (gE) compared to TLE-non-FBTCS patients. The gE showed a significant negative correlation with intrinsic alertness for TLE-non-FBTCS patients. CONCLUSION: Our findings show different impairments in brain network information integration, segregation and alertness between the patients with TLE-FBTCS and TLE-non-FBTCS, demonstrating that impairments of the brain network may underlie the disruptions in alertness functions.


Asunto(s)
Epilepsia Generalizada , Epilepsia del Lóbulo Temporal , Encéfalo/diagnóstico por imagen , Epilepsia del Lóbulo Temporal/complicaciones , Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Convulsiones
7.
Cerebellum ; 21(2): 253-263, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34164777

RESUMEN

We aimed to explore the altered functional connectivity patterns within cerebello-cerebral circuits in temporal lobe epilepsy (TLE) patients with and without focal to bilateral tonic-clonic seizures (FBTCS). Forty-two patients with unilateral TLE (21 with and 21 without FBTCS) and 22 healthy controls were recruited. We chose deep cerebellar nuclei as seed regions, calculated static and dynamic functional connectivity (sFC and dFC) in the patients with and without FBTCS and healthy controls, and compared sFC and dFC among the three groups. Correlation analyses were used to assess relationships between the significantly altered imaging features and patient clinical parameters. Compared to the group without FBTCS, the FBTCS group showed decreased sFC between the right dentate nuclei and left hemisphere regions including the middle frontal gyrus, superior temporal gyrus, superior medial frontal gyrus and posterior cingulate gyrus, and significantly increased dFC between the right interposed nuclei and contralateral precuneus. Relative to HCs, the FBTCS group demonstrated prominently decreased sFC between the right dentate nuclei and left middle frontal gyrus. No significant correlations between the altered imaging features and patient clinical parameters were observed. Our results suggest that the disrupted cerebello-cerebral FC might be related to cognitive impairment, epileptogenesis, and propagation of epileptic activities in patients with FBTCS.


Asunto(s)
Epilepsia del Lóbulo Temporal , Encéfalo , Núcleos Cerebelosos/diagnóstico por imagen , Corteza Cerebral/diagnóstico por imagen , Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Epilepsia del Lóbulo Temporal/psicología , Humanos , Imagen por Resonancia Magnética , Convulsiones/diagnóstico por imagen
8.
Front Neurol ; 12: 735689, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34712198

RESUMEN

Visuospatial working memory (VSWM) impairment is common in patients with right temporal lobe epilepsy (rTLE). The posterior hippocampus is critical for spatial memory, but the contributions of the different subfields to VSWM deficits remain unclear. Forty-six rTLE patients and 42 healthy controls (HCs) were recruited. Resting-state fMRI (rsfMRI) and structural MRI scans were administered, followed by a VSWM_Nback test. The right posterior hippocampus was automatically segmented, and the surface-based functional connectivity (SBFC) of the subiculum (Sub), CA1, CA3, dentate gyrus (DG), hippocampal tail, and right entorhinal cortex (EC) were compared between groups. Correlation analysis was performed between the altered SBFC and VSWM_Nback scores for rTLE patients. The results showed that rTLE patients underperformed in the VSWM_Nback test, with longer mean reaction time of accurate response (ACCmeanRT) in 0back and 2back condition, lower hit rate (HR) and higher false alarm rate (FAR) in 2back condition. Compared with HCs, the rCA3 in the rTLE group exhibited decreased SBFC with inferior parietal cortex (IPC), temporal lateral cortex (TLC), and posterior visual cortex (PVC) in the right hemisphere as well as the bilateral dorsolateral prefrontal cortex (DLPFC). The SBFC of the rEC and right anterior cingulate cortex (rACC) increased in the rTLE group. Within the rTLE group, the decreased SBFC of the rCA3-rIPC and rCA3-rLTC were correlated with worse VSWM performance. Therefore, the decreased SBFC of the rCA3-rIPC and rCA3-rLTC might be the critical aberrant FC pattern reflecting VSWM impairment in rTLE patients. The mechanism might involve functional disruption between the core subsystem and the medial temporal subsystem of the default mode network (DMN).

9.
Front Neurosci ; 15: 820641, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35126048

RESUMEN

OBJECTIVE: Temporal lobe epilepsy (TLE) can be conceptualized as a network disease. However, the network characteristics in lateralization remain controversial. METHODS: In this study, resting-state functional MRI scans were acquired from 53 TLE patients [22 with left-side TLE (LTLE) and 31 with right-side TLE (RTLE)] and 37 matched healthy controls. We focused on the characteristics of static and dynamic functional connectivity, including static connectivity patterns and topological properties, as well as temporal properties of the dynamic connectivity state and the variability of the dynamic connectivity and network topological organization. Correlation analyses were conducted between abnormal static and dynamic properties and cognitive performances. RESULTS: The static functional connectivity analysis presented a significantly decreased cortical-cortical connectivity pattern and increased subcortical-cortical connectivity pattern in RTLE. The global-level network in RTLE showed a significant decrease in global efficiency. The dynamic functional connectivity analysis revealed that RTLE patients exhibited aberrant connectivity states, as well as increased variability in the subcortical-cortical connectivity. The global-level network in RTLE revealed increased variance in global efficiency and local efficiency. The static or dynamic functional connectivity in LTLE did not show any significant abnormalities. The altered dynamic properties were associated with worsening cognitive performance in language and conceptual thinking by the TLE patients. CONCLUSION: Our findings demonstrated the presence of abnormalities in the static and dynamic functional connectivity of TLE patients. RTLE patients exhibited more pronounced aberrant connectivity patterns and topological properties, which might represent a mechanism for reconfiguration of brain networks in RTLE patients. These observations extended our understanding of the pathophysiological network mechanisms of TLE.

10.
Neurosci Lett ; 602: 6-11, 2015 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-26101832

RESUMEN

The aim of this study was to investigate the alterations in a verbal working memory (VWM)-related network in left temporal lobe epilepsy (lTLE) at rest. We evaluated 14 patients with lTLE and 14 control subjects by resting-state functional connectivity (RSFC). The region of interest was defined by the voxel with the highest Z-score during a VWM task according to functional magnetic resonance imaging in 16 healthy volunteers. Our study revealed that the network of RSFC was similar to the task-induced network in the healthy volunteers. Moreover, the patients with lTLE exhibited significantly decreased RSFC in the bilateral middle frontal gyrus, the inferior frontal gyrus and the inferior parietal lobule at rest compared to the control subjects. We found no significant correlation between the mean reaction time of the accurate responses in a 2-back task and the mean z-values within the regions that exhibited significant differences in RSFC at the individual level. The alterations in FCs of VWM-related network in lTLE suggested that epileptiform discharges can damage the brain regions, both local focus and remote areas and that the alterations were not associated with VWM performance.


Asunto(s)
Encéfalo/fisiopatología , Epilepsia del Lóbulo Temporal/fisiopatología , Memoria a Corto Plazo , Aprendizaje Verbal , Adulto , Mapeo Encefálico , Estudios de Casos y Controles , Epilepsia del Lóbulo Temporal/psicología , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino
11.
Epilepsy Behav ; 44: 47-54, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25622022

RESUMEN

OBJECTIVES: Studies have provided evidence regarding the pathology of the thalamus in patients with temporal lobe epilepsy (TLE). The thalamus, particularly the right thalamus, is one of the subcortical structures that are most uniformly accepted as being significantly involved in alertness. Moreover, alertness impairment in epilepsy has been reported. This study aimed to investigate alterations in thalamic resting-state functional connectivity (FC) and their relationships with alertness performance in patients with TLE; an issue that has not yet been addressed. METHODS: A total of 15 patients with right TLE (rTLE) and 16 healthy controls were recruited for the present study. All of the participants underwent a resting-state functional magnetic resonance imaging (fMRI) scan and the attention network test (ANT). Whole-brain voxel-wise FC analyses were applied to extract the thalamic resting-state functional networks in the patients with rTLE and healthy controls, and the differences between the two groups were evaluated. Correlation analyses were employed to examine the relationships between alterations in thalamic FC and alertness performance in patients with rTLE. RESULTS: Compared to the healthy controls, the FC within and between the bilateral thalamus was decreased in the patients with rTLE. Moreover, in the patient group, the bilateral anterior cingulate cortex (ACC) and subcortical regions, including the bilateral brainstem, cerebellum, putamen, right caudate nucleus, and amygdala, exhibited decreased FC with the ipsilateral thalamus (p<0.05, AlphaSim corrected, cluster size>44) but not with the contralateral thalamus (p<0.05, AlphaSim corrected, cluster size>43). The intrinsic and phasic alertness performances of the patients were impaired (p=0.001 and p<0.001, respectively) but not correlated with decreased thalamic FC. Meanwhile, the alertness performance was not altered in right TLE but was negatively correlated with decreased thalamic FC with ACC (p<0.05). CONCLUSIONS: Our findings highlight the functional importance of the thalamus in TLE pathology and suggest that damage to the thalamic resting-state functional networks, particularly ipsilateral to the epileptogenic focus, is present in patients with TLE.


Asunto(s)
Atención , Epilepsia del Lóbulo Temporal/fisiopatología , Epilepsia del Lóbulo Temporal/psicología , Desempeño Psicomotor , Tálamo/fisiopatología , Adulto , Tronco Encefálico/fisiopatología , Cerebelo/fisiopatología , Femenino , Lateralidad Funcional , Humanos , Imagen por Resonancia Magnética , Masculino , Red Nerviosa/fisiopatología , Pruebas Neuropsicológicas , Tiempo de Reacción , Adulto Joven
12.
Epilepsy Behav ; 35: 64-71, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24810401

RESUMEN

PURPOSE: This study aimed to investigate the resting-state brain network related to visuospatial working memory (VSWM) in patients with right temporal lobe epilepsy (rTLE). The functional mechanism underlying the cognitive impairment in VSWM was also determined. METHOD: Fifteen patients with rTLE and 16 healthy controls matched for age, gender, and handedness underwent a 6-min resting-state functional MRI session and a neuropsychological test using VSWM_Nback. The VSWM-related brain network at rest was extracted using multiple independent component analysis; the spatial distribution and the functional connectivity (FC) parameters of the cerebral network were compared between groups. Behavioral data were subsequently correlated with the mean Z-value in voxels showing significant FC difference during intergroup comparison. RESULTS: The distribution of the VSWM-related resting-state network (RSN) in the group with rTLE was virtually consistent with that in the healthy controls. The distribution involved the dorsolateral prefrontal lobe and parietal lobe in the right hemisphere and the partial inferior parietal lobe and posterior lobe of the cerebellum in the left hemisphere (p<0.05, AlphaSim corrected). Between-group differences suggest that the group with rTLE had a decreased FC within the right superior frontal lobe (BA8), right middle frontal lobe, and right ventromedial prefrontal lobe compared with the controls (p<0.05, AlphaSim corrected). The regions of increased FC in rTLE were localized within the right superior frontal lobe (BA11), right superior parietal lobe, and left posterior lobe of the cerebellum (p<0.05, AlphaSim corrected). Moreover, patients with rTLE performed worse than controls in the VSWM_Nback test, and there were negative correlations between ACCmeanRT (2-back) and the mean Z-value in the voxels showing decreased or increased FC in rTLE (p<0.05). CONCLUSION: The results suggest that the alteration of the VSWM-related RSN might underpin the VSWM impairment in patients with rTLE and possibly implies a functional compensation by enlarging the FC within the ipsilateral cerebral network.


Asunto(s)
Encéfalo/irrigación sanguínea , Epilepsia del Lóbulo Temporal/complicaciones , Lateralidad Funcional/fisiología , Trastornos de la Memoria/etiología , Trastornos de la Memoria/patología , Memoria a Corto Plazo/fisiología , Adulto , Encéfalo/fisiopatología , Epilepsia del Lóbulo Temporal/patología , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Red Nerviosa/irrigación sanguínea , Red Nerviosa/patología , Oxígeno/sangre , Estimulación Luminosa , Descanso/fisiología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...